

MB210-212/214

Модуль дискретного ввода

Руководство по эксплуатации

02.2020 версия 1.19 EHE

Содержание

Предупреждающие сообщения	4
Введение	5
Используемые аббревиатуры	6
1 Назначение	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики и условил эксплуатации	
2.2 Изоляция узлов прибора	
2.3 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж	
5 Подключение	
5.1 Рекомендации по подключению	
5.1 Рекомендации по подключению	
5.3 Назначение разъемов	
5.4 Питание	
5.4 Питание	
5.1.1 Подключение к входам 5.1.1 Подключение к дискретным входам датчиков типа «сухой контакт»	
5.1.2 Подключение к дискретным входам датчиков типа «сухой контакт»	
5.1.3 Подключение энкодеров p-n-p и n-p-n типов	
6 Устройство и принцип работы	
6.1 Принцип работы	
6.2 Индикация и управление	
6.3 Часы реального времени	
6.4 Запись архива	
6.5 Режимы обмена данными	
6.5.1 Работа по протоколу Modbus TCP	
6.5.2 Коды ошибок для протокола Modbus	
6.6 Режимы работы дискретных входов	
6.6.1 Режим определения логического уровня	
6.6.2 Режим подсчета числа высокочастотных импульсов	
6.6.3 Режим измерения частоты	
6.6.4 Режим обработки сигналов с энкодера	
7 Настройка	
7.1 Подключение к ПО «OWEN Configurator»	
7.2 Подключение к облачному сервису «OwenCloud»	37
7.3 Ограничение обмена данными при работе с облачным сервисом «OwenCloud»	
7.4 Настройка сетевых параметров	
7.5 Пароль доступа к модулю	
7.6 Обновление встроенного ПО	39
7.7 Настройка часов реального времени	
7.8 Восстановление заводских настроек	
7.9 Принудительное обнуление счетчика	40
8 Техническое обслуживание	41
8.1 Общие указания	
8.2 Замена батареи	
9 Комплектность	44

10 Маркировка	45
11 Упаковка	46
12 Транспортирование и хранение	47
ПРИЛОЖЕНИЕ А. Расчет вектора инициализации для шифрования файла	
архива	48

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием модулей дискретного ввода МВ210-212 и МВ210-214 (в дальнейшем по тексту именуемых «прибор» или «модуль»).

Подключение, настройка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Обозначение прибора при заказе: МВ210-212 и МВ210-214.

Используемые аббревиатуры

ПО – программное обеспечение.

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

USB — последовательный интерфейс для подключения периферийных устройств к вычислительной технике.

UTC – всемирное координированное время.

RTC – часы реального времени.

1 Назначение

Модуль предназначен для сбора данных со встроенных дискретных входов и передачи их в сеть Ethernet к ПЛК, панельным контроллерам, компьютерам или иным устройствам.

В модуле реализовано 32 дискретных входа, предназначенных для подключения датчиков или сигналов следующих типов:

- Для **MB210-212:** контактный датчик, транзисторный ключ n-p-n типа, транзисторный ключ p-n-p типа.
- Для **MB210-214:** «сухой контакт», транзисторный ключ n-p-n типа.

Модуль предназначен для применения в промышленности и сельском хозяйстве.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика	Значение			
Питание				
Напряжение питания	От 10 до 48 В (номинальное 24 В)			
Потребляемая мощность (при питании 24 В), не более	9 Вт			
Защита от переполюсовки напряжения питания	Есть			
Гистерезис выключения дискретного входа	0,5 B			
Интер	рейсы			
Интерфейс обмена	Сдвоенный Ethernet 10/100 Mbit			
Интерфейс конфигурирования	USB 2.0 (MicroUSB), Ethernet 10/100 Mbit			
Протокол обмена	Modbus TCP			
Версия протокола	IPv4			
Дискретные входы	модуля МВ210-212			
Количество входов	32			
Тип сигнала	 контактный датчик (требует внешнее питание =24 В); транзисторный ключ n-p-n типа; транзисторный ключ p-n-p типа 			
Режимы работы	 • определение логического уровня; • подсчет количества высокочастотных импульсов (только первые 8); • измерение частоты (только первые 8); • обработка сигналов энкодера (до 3 энкодеров) 			
Минимальная длительность импульса, воспринимаемая дискретным входом (только для DI1–DI8)	5 мкс (до 100 кГц)			
Минимальная длительность единичного импульса (для входов DI9–DI20)	1 мс (до 400 Гц)			
Ток «логического нуля», не более	1,2 мА			
Ток «логической единицы», не менее	5,5 mA			
Напряжение «логического нуля»	0,06,1 B			
Напряжение «логической единицы»	8,830,0 B			
Дискретные входы	модуля МВ210-214			
Количество входов	32			
Тип сигнала	• «сухой контакт»; • транзисторный ключ n-p-n типа			
Режимы работы	• определение логического уровня;• подсчет числа импульсов			
Минимальная длительность единичного импульса	1 мс			
Сопротивление контактов (ключа) и соединительных проводов, подключаемых к дискретному входу, не более	100 Ом			
Flash-память (архив)				
Количество циклов записи и стирания	До 100000			
Максимальный размер файла архива	2 кб			
Максимальное количество файлов архива	1000			
Минимальный период записи архива	10 секунд			
Часы реального времени				

3 секунды в сутки 10 секунд в сутки Батарея CR2032 6 лет
I0 секунд в сутки Батарея CR2032
·
6 лет
× 124 × 83) ±0,5 мм
IP20
60 000 ч
10 лет
0,6 кг

2.2 Изоляция узлов прибора

Схема гальванически изолированных узлов и прочность гальванической изоляции приведены на рисунке 2.1.

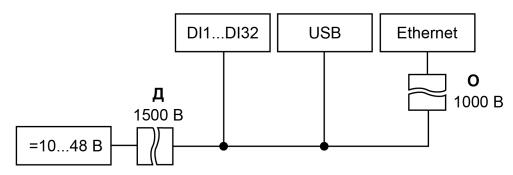


Рисунок 2.1 - Изоляция узлов прибора

Таблица 2.2 – Типы изоляции

Тип	Описание
Основная (О)	Изоляция для частей оборудования, находящихся под напряжением, с целью защиты от поражения электрическим током. Электрическая прочность основной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения, величина которого различна для различных цепей прибора
Дополнительная (Д)	Независимая изоляция, в дополнение к основной изоляции для гарантии защиты от поражения электрическим током в случае отказа основной изоляции. Электрическая прочность дополнительной изоляции прибора проверяется типовыми испытаниями испытательного переменного напряжения различной величины (действующее значение)

ПРЕДУПРЕЖДЕНИЕ

Значение прочности изоляции указано для испытаний при нормальных климатических условиях (время воздействия – 1 минута) согласно ГОСТ IEC 61131-2.

2.3 Условия эксплуатации

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ IEC 61131-2. По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса A по ГОСТ 30804.6.3. Прибор предназначен для эксплуатации в следующих условиях:

• температура окружающего воздуха от минус 40 до плюс 55 °C;

- относительная влажность воздуха от 10 % до 95 % (при +35 °C без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- допустимая степень загрязнения 1 по ГОСТ IEC 61131-2.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

Прибор относится к приборам II класса электробезопасности по ГОСТ IEC 61131-2.

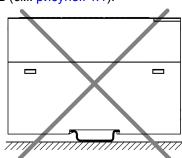
3 Меры безопасности

Во время эксплуатации и технического обслуживания следует соблюдать требования ГОСТ 12.3.019, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам. Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы прибора.

ВНИМАНИЕ


Запрещено использовать прибор при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж

Прибор устанавливается в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания влаги, грязи и посторонних предметов.

Для установки прибора следует выполнить действия:

- 1. Убедиться в наличии свободного пространства для подключения прибора и прокладки проводов.
- 2. Закрепить прибор на DIN-рейке или на вертикальной поверхности с помощью винтов (см. рисунок 4.1).

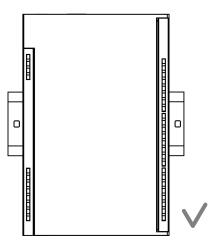
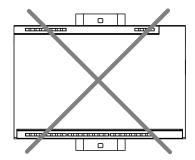



Рисунок 4.1 – Верный монтаж

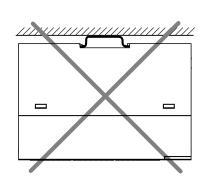


Рисунок 4.2 – Неверный монтаж

ВНИМАНИЕ

Во время монтажа необходимо свободное пространство минимум в 50 мм над модулем и под ним.

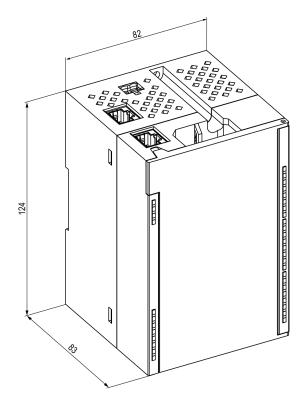


Рисунок 4.3 – Габаритный чертеж

Рисунок 4.4 – Установочные размеры

5 Подключение

5.1 Рекомендации по подключению

Внешние связи монтируют проводом сечением не более 0,75 мм².

Для многожильных проводов следует использовать наконечники.

После монтажа провода следует уложить в кабельном канале корпуса прибора и закрыть крышкой.

В случае необходимости следует снять клеммники прибора, открутив два винта по углам клеммников.

Провода питания следует монтировать с помощью ответного клеммника из комплекта поставки.

ВНИМАНИЕ

Подключение и техническое обслуживание производится только при отключенном питании прибора и подключенных к нему устройств.

ВНИМАНИЕ

Запрещается подключать провода разного сечения к одной клемме.

ВНИМАНИЕ

Запрещается подключать более двух проводов к одной клемме.

5.2 Назначение контактов клеммника

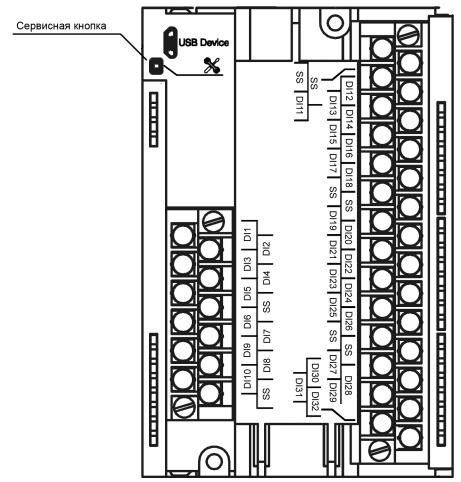


Рисунок 5.1 – Назначение контактов клеммника

Таблица 5.1 - Назначение контактов

Наименование	Назначение	
DI1-DI32	Входы DI1-DI32	
СОМ (для МВ210-214)	— Общая точка питания входов	
SS (для MB210-212)		

5.3 Назначение разъемов

Разъемы интерфейсов и питания прибора приведены на рисунке ниже.

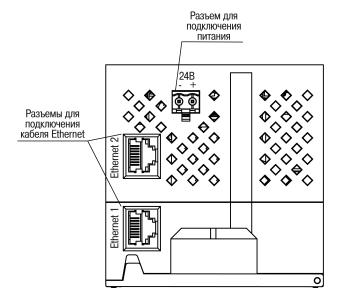


Рисунок 5.2 – Разъемы прибора

5.4 Питание

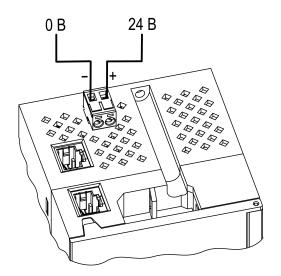


Рисунок 5.3 – Назначение контактов питания

ВНИМАНИЕ

Использование источников питания без потенциальной развязки или с базовой (основной) изоляцией цепей низкого напряжения от линий переменного тока, может привести к появлению опасных напряжений в цепях.

5.1 Подключение к входам

5.1.1 Подключение к дискретным входам датчиков типа «сухой контакт»

К прибору можно подключать до 32 датчиков типа «сухой контакт».

Цепи COM/SS объединены внутри прибора.

Схема подключения датчиков к МВ210-212 представлена на рисунке 5.4.

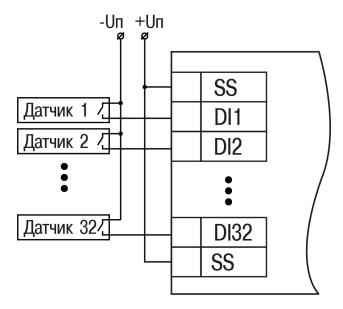


Рисунок 5.4 - Схема подключения к входам DI1-DI20 MB210-212

Схема подключения датчиков к МВ210-214 представлена на рисунке 5.5.

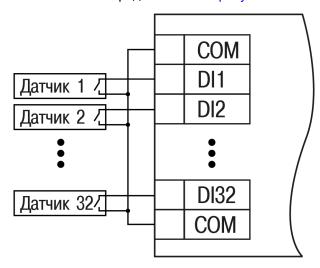


Рисунок 5.5 - Схема подключения к входам DI1-DI20 MB210-214

5.1.2 Подключение сигналов транзисторов p-n-p и n-p-n типов

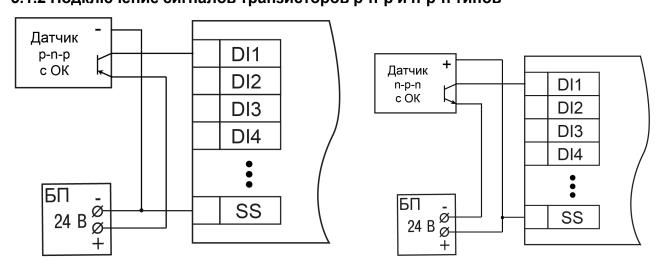


Рисунок 5.6 – Подключение транзисторов p-n-p (только для MB210-212

Рисунок 5.7 – Подключение транзисторов n-p-n

5.1.3 Подключение энкодеров p-n-p и n-p-n типов

На рисунках представлено подключение энкодеров к модулю МВ210-212.

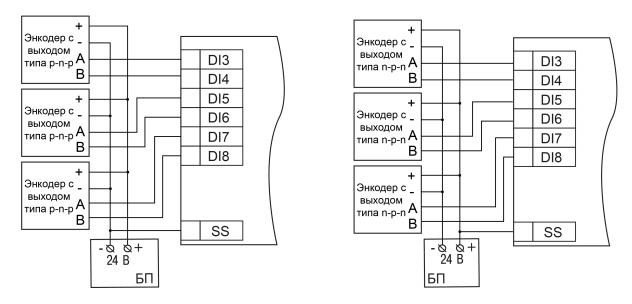


Рисунок 5.8 – Подключение энкодеров типа p-n-p

Рисунок 5.9 – Подключение энкодеров типа n-p-n

5.4 Подключение по интерфейсу Ethernet

Для подключения прибора к сети Ethernet можно использовать следующие схемы:

- «Звезда» (рисунок 5.10);
- «Цепочка»/«Daisy-chain» (рисунок 5.11).

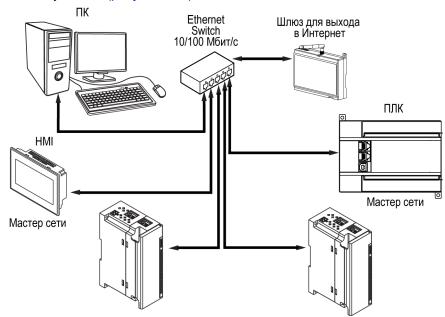


Рисунок 5.10 - Подключение по схеме «Звезда»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линий связи 100 м.
- 2. Подключение возможно к любому порту Ethernet прибора.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

Для подключения по схеме «Цепочка» следует использовать оба Ethernet-порта прибора. Если прибор вышел из строя или отключилось питание, то данные будут передаваться с порта 1 на порт 2 без разрыва связи.

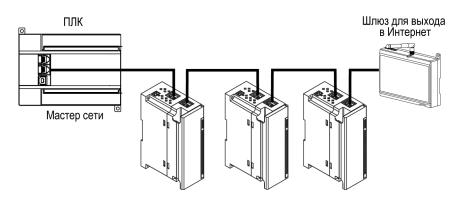


Рисунок 5.11 – Подключение по схеме «Цепочка»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линии связи между двумя соседними активными устройствами при подключении по схеме «Цепочка» должна быть не более 100 м.
- 2. Допускается смежная схема подключения.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

6 Устройство и принцип работы

6.1 Принцип работы

Модуль получает команды от Мастера сети и в ответ отправляет информацию о состоянии дискретных входов.

В качестве Мастера сети можно использовать:

- □K;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

6.2 Индикация и управление

На лицевой панели прибора расположены элементы индикации — светодиоды. Назначение светодиодов приведено в таблице 6.1.

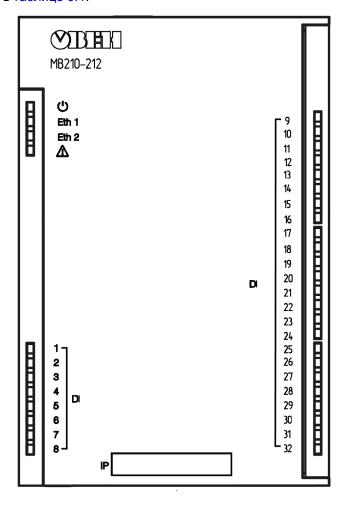


Рисунок 6.1 – Лицевая панель прибора

ПРЕДУПРЕЖДЕНИЕ

В нижней части лицевой панели расположено поле «IP».

Поле «IP» предназначено для нанесения IP-адреса модуля тонким маркером или на бумажной наклейке.

Таблица 6.1 – Назначение индикаторов

Индикатор	Состояние индикатора	Назначение
Питание (зеленый)	Светится	Напряжение питания прибора подано
Eth 1 (зеленый)	Мигает	Передача данных по порту 1 Ethernet

Индикатор	Состояние индикатора	Назначение
Eth 2 (зеленый)	Мигает	Передача данных по порту 2 Ethernet
Авария (красный)	Не светится	Сбои отсутствуют
	Светится постоянно	Сбой основного приложения и/ или конфигурации
	Включается на 200 мс один раз в три секунды	Необходима замена батареи питания часов
	Включается на 100 мс два раза в секунду (через паузу 400 мс)	Модуль находится в безопасном состоянии
	Включен 900 мс, 100 мс выключен	Аппаратный сбой периферии (Flash, RTC, Ethernet Switch)
Индикаторы состояния	Светится зеленым	Замкнутое состояние входа
выходов (зеленый)	Не светится	Разомкнутое состояние входа

Под лицевой панелью расположены клеммники и сервисная кнопка.

Сервисная кнопка предназначена для выполнения следующих функций:

- восстановление заводских настроек (раздел 7.8);
- установка IP-адреса (раздел 7.4);
- обновление встроенного программного обеспечения (раздел 7.6).

6.3 Часы реального времени

В приборе есть встроенные часы реального времени (RTC). Часы реального времени работают от собственного батарейного источника питания.

Отсчет времени производится по UTC в секундах, начиная с 00:00 01 января 2000 года. Значение RTC используется для записи в архив.

6.4 Запись архива

В модуль встроена флеш-память (flash), размеченная под файловую систему с шифрованием файлов. Алгоритм шифрования — Data Encryption Standard (DES) в режиме сцепления блоков шифротекста (CBC). В качестве ключа используется строка **superkey**. Вектор инициализации генерируется с помощью хеш-функции (см. приложение A). Аргументом функции является пароль, заданный в ПО «OWEN Configurator». В конце файла сохраняется контрольная сумма, рассчитанная по алгоритму CRC32 (контрольная сумма также шифрируется).

Архив модуля сохраняется в виде набора файлов. Период архивации, ограничение на размер одного файла и их количество задается пользователем в ПО «OWEN Configurator». Если архив полностью заполнен, то данные перезаписываются, начиная с самых старых данных самого старого файла.

Файл архива состоит из набора записей. Записи разделены символами переноса строки (0x0A0D). Каждая запись соответствует одному параметру и состоит из полей, разделенных символом «;» (без кавычек). Формат записи приведен в таблице ниже.

Таблица 6.2 – Формат записи в файле архива

Параметр	Тип	Размер	Комментарий
Метка времени	Binary data	4 байта	В секундах начиная с 00:00 01.01.2000 (UTC+0)
Разделитель	Строка	1 байт	Символ «;» (без кавычек)
Уникальный идентификатор параметра (UID)	Строка	8 байт	В виде строки из НЕХ-символов с ведущими нулями
Разделитель	Строка	1 байт	Символ «;» (без кавычек)
Значение параметра	Строка	зависит от параметра	В виде строки из НЕХ-символов с ведущими нулями
Разделитель	Строка	1 байт	Символ «;» (без кавычек)

Параметр	Тип	Размер	Комментарий
Статус параметра	Binary data	1 байт	1 – значение параметра корректно, 0 – значение параметра некорректно и его дальнейшая обработка не рекомендована
Перенос строки	Binary data	2 байта	\n\r (0x0A0D)

Пример

Расшифрованная запись:

где

 $0x52\ 0x82\ 0xD1\ 0x24$ — метка времени. Для получения даты и времени в формате UnixTime следует изменить порядок байт на противоположный и добавить константу-смещение (число секунд между $00:00:00\ 01.01.1970$ и $00:00:00\ 01.01.2000$): $0x24D18252\ (HEX) + 946684800\ (DEC) = 1564394971\ (DEC, соответствует 29 июля <math>2019\ r.$, 10:09:31);

0х3В — разделитель;

0x30 0x30 0x30 0x30 0x61 0x39 0x30 0x30 — уникальный идентификатор параметра (00003ba00);

0х30 0х30 0х30 0х30 0х30 0х30 0х30 0х31 — значение параметра (00000001);

0х31 — статус параметра (1 – значение параметра корректно);

0x0A 0x0D — символы переноса строки.

Прибор фиксирует время в архивных файлах по встроенным часам реального времени. Также можно задать часовой пояс, который будет считываться «OwenCloud» или внешним ПО. Запись во флешпамять (flash) происходит с определенной частотой, рассчитанной таким образом, чтобы ресурса флеш-памяти (flash) прибора хватило на срок не менее 10 лет работы.

Архив может считываться:

- облачным сервисом «OwenCloud» (считывается автоматически в случае потери и дальнейшего восстановления связи);
- ПО «OWEN Configurator» (например, для ручного анализа);
- пользовательским ПО (с помощью 20 функции Modbus).

Список архивируемых параметров доступен в ПО «OWEN Configurator» на вкладке «Информация об устройстве». Порядок записи параметров в архив соответствует порядку параметров на вкладке.

ПРИМЕЧАНИЕ

После обновления встроенного ПО все настройки прибора кроме сетевых сбросятся на заводские.

Архив считывается с помощью 20 функции Modbus (0x14). Данная функция возвращает содержание регистров файла памяти и позволяет с помощью одного запроса прочитать одну или несколько записей из одного или нескольких файлов.

В запросе чтения файла для каждой записи указывается:

- тип ссылки 1 байт (должен быть равен 6);
- номер файла 2 байта;
- начальный адрес регистра внутри файла 2 байта;
- количество регистров для чтения 2 байта.

ПРИМЕЧАНИЕ

Номер файла в запросе по Modbus рассчитывается как 4096 + порядковый номер файла. Порядковая нумерация файлов ведется с нуля. Параметр «Последний индекс архива» содержит порядковый номер файла архива, в который последний раз записывались данные.

Количество считываемых регистров в запросе должно быть подобрано таким образом, чтобы длина ответа не превышала допустимую длину пакета Modbus (256 байт).

Размер файла архива заранее неизвестен, поэтому следует считывать порции данных с помощью отдельных запросов. Если в ответ на запрос будет получено сообщение с кодом ошибки 0x04 (MODBUS_SLAVE_DEVICE_FAILURE), то можно сделать вывод, что адреса регистров в запросе находятся за пределами файла. Чтобы считать последние данные файла, требуется уменьшить количество регистров в запросе.

ПРИМЕЧАНИЕ

В случае выключения питания модуля производимая в момент снятия питания запись в файле архива может не сохраниться.

6.5 Режимы обмена данными

Модуль поддерживает следующие режимы обмена данными:

- обмен с Мастером по протоколу Modbus TCP (порт 502) до 4 одновременных соединений с разными Мастерами сети;
- соединение и обмен данными с ПК с помощью ПО «OWEN Configurator»;
- обмен с удаленным облачным сервисом OwenCloud (необходим доступ в Интернет).

6.5.1 Работа по протоколу Modbus TCP

Таблица 6.3 – Чтение и запись параметров по протоколу Modbus TCP

Операция	Функция
Чтение	3 (0х03) или 4 (0х04)
Запись	6 (0х06) или 16 (0х10)

Список регистров Modbus считывается с прибора с помощью ПО «OWEN Configurator» во вкладке «Параметры устройства». А также список регистров Modbus представлен в таблицах ниже.

Таблица 6.4 – Общие регистры оперативного обмена по протоколу Modbus

Название	Регистр	Размер/тип/описание
Название (имя) прибора для показа пользователю (DEV)	0xF000	Символьная строка до 32 байт, кодировка Win1251
Версия встроенного ПО прибора для показа пользователю (VER)	0xF010	Символьная строка до 32 байт, кодировка Win1251
Название платформы	0xF020	Символьная строка до 32 байт, Win1251
Версия платформы	0xF030	Символьная строка до 32 байт, Win1251
Версия аппаратного обеспечения	0xF040	Символьная строка до 16 байт, Win1251
Дополнительная символьная информация	0xF048	Символьная строка до 16 байт, Win1251
Время и дата	0xF080	4 байта, в секундах с 2000 г
Часовой пояс	0xF082	2 байта, signed short, смещение в минутах от Гринвича
Заводской номер прибора	0xF084	Символьная строка 32 байта, кодировка Win1251, используется 17 символов

Таблица 6.5 – Регистры обмена по протоколу ModBus

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Время и дата (UTC)	с 2000 г., секунд	61568	0xF080	Только чтение	UINT 32
Новое время	с 2000 г., секунд	61565	0xF07D	Чтение и запись	UINT 32
Записать новое время	0 – не записывать; 1 – записать	61567	0xF07F	Чтение и запись	UINT 16
Часовой пояс	смещение в минутах от Гринвича	61570	0xF082	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Время в миллисекундах	_	61563	0xF07B	Только чтение	UINT 32
Текущий IP-адрес	_	26	0x1A	Только чтение	UINT 32
Текущая маска подсети	_	28	0x1C	Только чтение	UINT 32
Текущий IP-адрес шлюза	_	30	0x1E	Только чтение	UINT 32
Установить IP-адрес	_	20	0x14	Чтение и запись	UINT 32
Установить маску подсети	_	22	0x16	Чтение и запись	UINT 32
Установить IP-адрес шлюза	_	24	0x18	Чтение и запись	UINT 32
Режим DHCP	0 – полный запрет; 1 – только чтение; 2 – только запись	32	0x20	Чтение и запись	UINT 16
Подключение к OwenCloud	0 — выкл.; 1 — вкл.	35	0x23	Чтение и запись	UINT 16
Статус подключения к OwenCloud	0 – нет связи; 1 – соединение; 2 – работа; 3 – ошибка; 4 – нет пароля	36	0x24	Только чтение	UINT 16
Тайм-аут перехода в безопасное состояние	060 (секунд)	700	0x2BC	Чтение и запись	UINT 8
Разрешение конфигурирования из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	701	0x2BD	Чтение и запись	UINT 16
Управление и запись значений из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	702	0x2BE	Чтение и запись	UINT 16
Доступ к регистрам Modbus из удаленного облачного сервиса	0 – полный запрет; 1 – только чтение; 2 – только запись; 3 – полный доступ	703	0x2BF	Чтение и запись	UINT 16
Статус прибора	_	61620	0xF0B4	Только чтение	UINT 32
МАС адрес	_	61696	0xF100	Только чтение	UINT 48
DNS сервер 1	_	12	0xC	Чтение и запись	UINT 32
DNS сервер 2	_	14	0xE	Чтение и запись	UINT 32
Состояние батареи (напряжение)	03300 (мВ)	801	0x321	Только чтение	UINT 16
Период архивирования	03600 (секунд); заводская настройка — 30	900	0x384	Чтение и запись	UINT 16
Состояние дискретных входов DI1–DI32, битовая маска	04294967295	51	0x33	Только чтение	UINT 32

Параметр	Параметр Значение (ед. изм.) Адрес регистр		егистра	Тип доступа	Формат	
		DEC	HEX		данных	
Дополнительный режим работы входа DI1*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	64	0x40	Чтение и запись	UINT 16	
Дополнительный режим работы входа DI2*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	65	0x41	Чтение и запись	UINT 16	
Дополнительный режим работы входа DI3	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	66	0x42	Чтение и запись	UINT 16	
Дополнительный режим работы входа DI4	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	67	0x43	Чтение и запись	UINT 16	
Дополнительный режим работы входа DI5	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	68	0x44	Чтение и запись	UINT 16	
Дополнительный режим работы входа DI6	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	69	0x45	Чтение и запись	UINT 16	

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX]	данных
Дополнительный режим работы входа DI7	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	70	0x46	Чтение и запись	UINT 16
Дополнительный режим работы входа DI8	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	71	0x47	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI1*	0 — выкл.; 1 — вкл.	96	0x60	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI2*	0 — выкл.; 1 — вкл.	97	0x61	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI3*	0 — выкл.; 1 — вкл.	98	0x62	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI4*	0 — выкл.; 1 — вкл.	99	0x63	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI5*	0 — выкл.; 1 — вкл.	100	0x64	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI6*	0 — выкл.; 1 — вкл.	101	0x65	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI7*	0 — выкл.; 1 — вкл.	102	0x66	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI8*	0 — выкл.; 1 — вкл.	103	0x67	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI9*	0 — выкл.; 1 — вкл.	104	0x68	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI10*	0 — выкл.; 1 — вкл.	105	0x69	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI11*	0 — выкл.; 1 — вкл.	106	0x6A	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI12*	0 — выкл.; 1 — вкл.	107	0x6B	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI13*	0 — выкл.; 1 — вкл.	108	0x6C	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Включение фильтра антидребезга для входа DI14*	0 — выкл.; 1 — вкл.	109	0x6D	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI15*	0 — выкл.; 1 — вкл.	110	0x6E	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI16*	0 — выкл.; 1 — вкл.	111	0x6F	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI17*	0 — выкл.; 1 — вкл.	112	0x70	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI18*	0 — выкл.; 1 — вкл.	113	0x71	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI19*	0 — выкл.; 1 — вкл.	114	0x72	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI20*	0 — выкл.; 1 — вкл.	115	0x73	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI21*	0 — выкл.; 1 — вкл.	116	0x74	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI22*	0 — выкл.; 1 — вкл.	117	0x75	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI23*	0 — выкл.; 1 — вкл.	118	0x76	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI24*	0 — выкл.; 1 — вкл.	119	0x77	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI25*	0 — выкл.; 1 — вкл.	120	0x78	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI26*	0 — выкл.; 1 — вкл.	121	0x79	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI27*	0 — выкл.; 1 — вкл.	122	0x7A	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI28*	0 — выкл.; 1 — вкл.	123	0x7B	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI29*	0 — выкл.; 1 — вкл.	124	0x7C	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI30*	0 — выкл.; 1 — вкл.	125	0x7D	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI31*	0 — выкл.; 1 — вкл.	126	0x7E	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат	
		DEC	HEX	1	данных	
Включение фильтра антидребезга для входа DI32*	0 — выкл.; 1 — вкл.	127	0x7F	Чтение и запись	UINT 16	
Период измерения частоты входа DI1*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	128	0x80	Чтение и запись	UINT 16	
Период измерения частоты входа DI2*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	129	0x81	Чтение и запись	UINT 16	
Период измерения частоты входа DI3*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	130	0x82	Чтение и запись	UINT 16	
Период измерения частоты входа DI4*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	131	0x83	Чтение и запись	UINT 16	
Период измерения частоты входа DI5*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	132	0x84	Чтение и запись	UINT 16	
Период измерения частоты входа DI6*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	133	0x85	Чтение и запись	UINT 16	
Период измерения частоты входа DI7*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	134	0x86	Чтение и запись	UINT 16	
Период измерения частоты входа DI8*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	135	0x87	Чтение и запись	UINT 16	
Значение входа DI1 в дополнительном режиме*	04294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	160	0xA0	Только чтение	UINT 32	
Значение входа DI2 в дополнительном режиме*	О4294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; О4294967295 (импульсы) — режим 4	162	0xA2	Только чтение	UINT 32	

Параметр	Значение (ед. изм.)	, , , , , , , , , , , , , , , , , , , ,		Тип доступа	Формат	
		DEC	HEX		данных	
Значение входа DI3 в дополнительном режиме*	О4294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	164	0xA4	Только чтение	UINT 32	
Значение входа DI4 в дополнительном режиме*	04294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	166	0xA6	Только чтение	UINT 32	
Значение входа DI5 в дополнительном режиме*	О4294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	168	0xA8	Только чтение	UINT 32	
Значение входа DI6 в дополнительном режиме*	04294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	170	0xAA	Только чтение	UINT 32	
Значение входа DI7 в дополнительном режиме*	04294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	172	0xAC	Только чтение	UINT 32	
Значение входа DI8 в дополнительном режиме*	О4294967295 (импульсы) — режим 1; 104294967295 (мс) — режим 2 100 4294967295 (Гц) — режим 3; 04294967295 (импульсы) — режим 4	174	0xAE	Только чтение	UINT 32	
Значение счетчика импульсов входа DI9	04294967295 (импульсы)	176	0xB0	Только чтение	UINT 32	
Значение счетчика импульсов входа DI10	04294967295 (импульсы)	178	0xB2	Только чтение	UINT 32	

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Значение счетчика импульсов входа DI11	04294967295 (импульсы)	180	0xB4	Только чтение	UINT 32
Значение счетчика импульсов входа DI12	04294967295 (импульсы)	182	0xB6	Только чтение	UINT 32
Значение счетчика импульсов входа DI13	04294967295 (импульсы)	184	0xB8	Только чтение	UINT 32
Значение счетчика импульсов входа DI14	04294967295 (импульсы)	186	0xBA	Только чтение	UINT 32
Значение счетчика импульсов входа DI15	04294967295 (импульсы)	188	0xBC	Только чтение	UINT 32
Значение счетчика импульсов входа DI16	04294967295 (импульсы)	190	0xBE	Только чтение	UINT 32
Значение счетчика импульсов входа DI17	04294967295 (импульсы)	192	0xC01	Только чтение	UINT 32
Значение счетчика импульсов входа DI18	04294967295 (импульсы)	194	0xC2	Только чтение	UINT 32
Значение счетчика импульсов входа DI19	04294967295 (импульсы)	196	0xC4	Только чтение	UINT 32
Значение счетчика импульсов входа DI20	04294967295 (импульсы)	198	0xC6	Только чтение	UINT 32
Значение счетчика импульсов входа DI21	04294967295 (импульсы)	200	0xC8	Только чтение	UINT 32
Значение счетчика импульсов входа DI22	04294967295 (импульсы)	202	0xCA	Только чтение	UINT 32
Значение счетчика импульсов входа DI23	04294967295 (импульсы)	204	0xCC	Только чтение	UINT 32
Значение счетчика импульсов входа DI24	04294967295 (импульсы)	206	0xCE	Только чтение	UINT 32
Значение счетчика импульсов входа DI25	04294967295 (импульсы)	208	0xD0	Только чтение	UINT 32
Значение счетчика импульсов входа DI26	04294967295 (импульсы)	210	0xD2	Только чтение	UINT 32
Значение счетчика импульсов входа DI27	04294967295 (импульсы)	212	0xD4	Только чтение	UINT 32
Значение счетчика импульсов входа DI28	04294967295 (импульсы)	214	0xD6	Только чтение	UINT 32
Значение счетчика импульсов входа DI29	04294967295 (импульсы)	216	0xD8	Только чтение	UINT 32
Значение счетчика импульсов входа DI30	04294967295 (импульсы)	218	0xDA	Только чтение	UINT 32
Значение счетчика импульсов входа DI31	04294967295 (импульсы)	220	0xDC	Только чтение	UINT 32
Значение счетчика импульсов входа DI32	04294967295 (импульсы)	222	0xDE	Только чтение	UINT 32
Сброс значения дополнительного режима входа DI1*	0 – сбросить; 1 – не сброшен	224	0xE0	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI2*	0 – сбросить; 1 – не сброшен	225	0xE1	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Сброс значения дополнительного режима входа DI3*	0 – сбросить; 1 – не сброшен	226	0xE2	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI4*	0 – сбросить; 1 – не сброшен	227	0xE3	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI5*	0 – сбросить; 1 – не сброшен	228	0xE4	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI6*	0 – сбросить; 1 – не сброшен	229	0xE5	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI7*	0 – сбросить; 1 – не сброшен	230	0xE6	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI8*	0 – сбросить; 1 – не сброшен	231	0xE7	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI9	0 – сбросить; 1 – не сброшен	232	0xE8	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI10	0 – сбросить; 1 – не сброшен	233	0xE9	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI11	0 – сбросить; 1 – не сброшен	234	0xEA	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI12	0 – сбросить; 1 – не сброшен	235	0xEB	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI13	0 – сбросить; 1 – не сброшен	236	0xEC	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI14	0 – сбросить; 1 – не сброшен	237	0xED	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI15	0 – сбросить; 1 – не сброшен	238	0xEE	Чтение и запись	UINT 16
Сброс значения счетчика импульсов зхода DI16	0 – сбросить; 1 – не сброшен	239	0xEF	Чтение и запись	UINT 16
Сброс значения счетчика импульсов зхода DI17	0 – сбросить; 1 – не сброшен	240	0xEF	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI18	0 – сбросить; 1 – не сброшен	241	0xF0	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI19	0 – сбросить; 1 – не сброшен	242	0xF2	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI20	0 – сбросить; 1 – не сброшен	243	0xF3	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX	1	данных
Сброс значения счетчика импульсов входа DI21	0 – сбросить; 1 – не сброшен	244	0xF4	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI22	0 – сбросить; 1 – не сброшен	245	0xF5	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI23	0 – сбросить; 1 – не сброшен	246	0xF6	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI24	0 – сбросить; 1 – не сброшен	247	0xF7	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI25	0 – сбросить; 1 – не сброшен	248	0xF8	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI26	0 – сбросить; 1 – не сброшен	249	0xF9	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI27	0 – сбросить; 1 – не сброшен	250	0xFA	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI28	0 – сбросить; 1 – не сброшен	251	0xFB	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI29	0 – сбросить; 1 – не сброшен	252	0xFC	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI30	0 – сбросить; 1 – не сброшен	253	0xFD	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI31	0 – сбросить; 1 – не сброшен	254	0xFE	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI32	0 – сбросить; 1 – не сброшен	255	0xFF	Чтение и запись	UINT 16

6.5.2 Коды ошибок для протокола Modbus

Во время работы модуля по протоколу Modbus возможно возникновение ошибок, представленных в таблице 6.6. В случае возникновения ошибки модуль отправляет Мастеру сети ответ с кодом ошибки.

Таблица 6.6 – Список возможных ошибок

Название ошибки	Возвращаемый код	Описание ошибки
MODBUS_ILLEGAL_FUNCTION	01 (0x01)	Недопустимый код функции – ошибка возникает, если модуль не поддерживает функцию Modbus, указанную в запросе
MODBUS_ILLEGAL_DATA_ ADDRESS	02 (0x02)	Недопустимый адрес регистра – ошибка возникает, если в запросе указаны адреса регистров, отсутствующие в модуле

Название ошибки	Возвращаемый код	Описание ошибки
MODBUS_ILLEGAL_DATA_ VALUE	03 (0x03)	Недопустимое значение данных – ошибка возникает, если запрос содержит недопустимое значение для записи в регистр
MODBUS_SLAVE_DEVICE_ FAILURE	04 (0x04)	Ошибка возникает, если запрошенное действие не может быть завершено

Во время обмена по протоколу Modbus модуль проверяет соответствие запросов спецификации Modbus. Не прошедшие проверку запросы игнорируются модулем. Запросы, в которых указан адрес, не соответствующий адресу модуля, также игнорируются.

Далее проверяется код функции. Если в модуль приходит запрос с кодом функции, не указанной в таблице 6.7, возникает ошибка MODBUS_ILLEGAL_FUNCTION.

Таблица 6.7 - Список поддерживаемых функций

Название функции	Код функции	Описание функции
MODBUS_READ_HOLDING_ REGISTERS	3 (0x03)	Чтение значений из одного или нескольких регистров хранения
MODBUS_READ_INPUT_ REGISTERS	4 (0x04)	Чтение значений из одного или нескольких регистров ввода
MODBUS_WRITE_SINGLE_ REGISTER	6 (0x06)	Запись значения в один регистр
MODBUS_WRITE_MULTIPLE_ REGISTERS	16 (0x10)	Запись значений в несколько регистров
MODBUS_READ_FILE_RECORD	20 (0x14)	Чтение архива из файла
MODBUS_WRITE_FILE_ RECORD	21 (0x15)	Запись архива в файл

Ситуации, приводящие к возникновению ошибок во время работы с регистрами, описаны в таблице 6.8.

Таблица 6.8 - Ошибки во время работы с регистрами

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
MODBUS_READ_ HOLDING_REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимально возможного числа (125); запрос несуществующего параметра
MODBUS_READ_INPUT_ REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимально возможного числа (125); запрос несуществующего параметра
MODBUS_WRITE_SINGLE_ REGISTER	MODBUS_ILLEGAL_DATA_ ADDRESS	 попытка записи параметра, размер которого превышает 2 байта; попытка записи параметра, доступ на запись к которому запрещен; попытка записи параметра такого типа, запись в который не может быть осуществлена данной функцией. Поддерживаемые типы: знаковые и беззнаковые целые (размер не более 2 байт); перечисляемые; float16 (на данный момент в модуле такой тип не используется). запрос несуществующего параметра
	MODBUS_ILLEGAL_DATA_ VALUE	• выход за пределы максимального или минимального ограничений для параметра

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
	MODBUS_ILLEGAL_DATA_ ADDRESS	 запись несуществующего параметра; попытка записи параметра, доступ на запись к которому запрещен; количество записываемых регистров больше максимально возможного числа (123)
MODBUS_WRITE_ MULTIPLE_REGISTERS	MODBUS_ILLEGAL_DATA_ VALUE	 не найден терминирующий символ (\0) в строковом параметре; размер запрашиваемых данных меньше размера первого или последнего в запросе параметра; выход за пределы максимального или минимального ограничений для параметра

Ситуации, приводящие к возникновению ошибок во время работы с архивом, описаны в таблице 6.9.

Таблица 6.9 - Ошибки во время работы с архивом

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
MODBUS_READ_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0x07 <= data length <= 0xF5)
	MODBUS_ILLEGAL_DATA_ ADDRESS	• reference type не соответствует спецификации; • не удалось открыть файл для чтения (возможно, он отсутствует)
	MODBUS_ILLEGAL_DATA_ VALUE	• не удалось переместиться к нужному смещению в файле
	MODBUS_SLAVE_DEVICE_ FAILURE	 • ошибка удаления файла при запросе на удаление; • запрос слишком большого количества данных (больше 250 байт); • недопустимый record number (больше 0x270F); • недопустимый record length (больше 0x7A)
MODBUS_WRITE_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0x09 <= data length <= 0xFB)
	MODBUS_ILLEGAL_DATA_ ADDRESS	• reference type не соответствует спецификации; • не удалось открыть файл для записи
	MODBUS_SLAVE_DEVICE_ FAILURE	 запрашиваемый файл отсутствует; запрашиваемый файл доступен только для чтения; не удалось записать необходимое количество байт

6.6 Режимы работы дискретных входов

Входы модуля работают в режиме определения логического уровня.

Для каждого входа задействован счетчик импульсов, поступающих на вход.

ПРИМЕЧАНИЕ

По умолчанию счетчики входов всегда включены. Счетчики входов с дополнительными режимами включены только в том случае, если дополнительный режим у входа отключен.

Таблица 6.10 - Параметры счетчика импульсов

Параметр	Значение
Разрядность	32 бит
Максимальная частота входного сигнала	400 Гц
Подавление дребезга	Вкл./выкл. Настраивается в ПО «OWEN Configurator»
Время подавления дребезга	25 мс (не настраивается)

ВНИМАНИЕ

Для работы с сигналами частотой более 40 Гц при скважности 0,5 и менее не следует включать подавление дребезга контактов, так как полезный сигнал будет принят за дребезг и пропущен.

Если счетчик переполнился, то соответствующий регистр обнуляется автоматически. Последовательность действий для принудительного обнуления приведена в разделе 7.9.

ПРИМЕЧАНИЕ

Счетчики входов являются энергонезависимыми, их значения сохраняются после перезагрузки модуля. Счетчики входов с дополнительными режимами после перезагрузки обнуляются.

Значения состояния дискретных входов хранятся в виде битовой маски и считываются из соответствующего регистра.

Первые 8 входов модуля МВ210-212 оддерживают следующие дополнительные режимы работы:

- подсчет количества высокочастотных импульсов (см. раздел 6.6.2);
- измерение частоты (см. раздел 6.6.3);
- обработка сигналов энкодера (см. раздел 6.6.4). Возможно подключение до 3 энкодеров.

ПРЕДУПРЕЖДЕНИЕ

На одном входе может быть включен только один дополнительный режим работы.

Выбирать и настраивать режимы следует:

- в параметре «Дополнительный режим работы» ПО «OWEN Configurator»;
- из удаленного облачного сервера;
- по протоколу Modbus TCP.

6.6.1 Режим определения логического уровня

Группа входов DI1-DI20 модуля выполняет определение логического уровня.

По опросу модуль возвращает в регистр Modbus битовую маску, соответствующую состоянию входов. Определение логического уровня производится постоянно и не зависит от включения режима счетчика импульсов, измерения частоты или обработки сигналов энкодера.

6.6.2 Режим подсчета числа высокочастотных импульсов

Режим подсчета числа высокочастотных импульсов работает для входов DI1-DI8.

Максимальная частота входного сигнала — 100 кГц при коэффициенте заполнения 0,5.

Для каждого входа задействован 32-разрядный счетчик. Значения счетчика входа считываются из регистра, соответствующего данному входу.

В случае переполнения счетчика значение обнуляется. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения входа в дополнительном режиме. Обнуление счетчика будет произведено в течение 10 мс после записи значения 0.

6.6.3 Режим измерения частоты

Входы DI1-DI8 можно настроить на режим измерения частоты, в котором на вход подается сигнал прямоугольной формы частотой от 0 Гц до 100 кГц.

Для данного режима необходимо установить диапазон измерения:

- от 0 Гц до 100 Гц;
- от 100 Гц до 100 кГц.

В диапазоне от 0 до 100 Гц измеряется период входного сигнала в мс.

В диапазоне от 100 Гц до 100 кГц измеряется частота входного сигнала в Гц. Частота вычисляется путем подсчета количества импульсов, поступивших на вход за период измерения.

Значение периода измерения устанавливается при настройке с помощью ПО «OWEN Configurator» в параметре «Период измерения».

Возможные значения периода измерения: 10 мс, 100 мс, 1 с, 10 с. Значение по умолчанию – 1 с.

Для каждого входа задействован 32-разрядный регистр. Значения входа считываются из регистра, соответствующего данному входу.

6.6.4 Режим обработки сигналов с энкодера

К модулю возможно подключение до трех двухканальных энкодеров (без Z канала). Номера входов для подключения: 3-4, 5-6, 7-8.

Максимальная частота сигналов с энкодера – 100 кГц.

Для каждого входа задействован 32-разрядный регистр, в котором находится накопленное количество импульсов с учетом направления вращения после обнуления, зафиксированное энкодером. Если после обнуления направление вращения производится в обратную сторону, то счет начинается с максимального и уменьшается на количество накопленных импульсов.

Значения входа считываются из регистра, соответствующего данному входу или из файла архива.

Если счетчик состояний входа переполнился, то соответствующий регистр обнуляется автоматически. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения счетчика. Обнуление счетчика будет произведено в течение 10 мс после записи значения 0.

7 Настройка

7.1 Подключение к ПО «OWEN Configurator»

Прибор настраивается в ПО «OWEN Configurator».

Прибор можно подключить к ПК с помощью следующих интерфейсов:

- USB (разъем micro-USB);
- · Ethernet;
- RS-485.

Для выбора интерфейса следует:

1. Подключить прибор к ПК с помощью кабеля USB или по интерфейсу Ethernet.

ПРЕДУПРЕЖДЕНИЕ

В случае подключения прибора к порту USB подача основного питания прибора не требуется.

Питание прибора осуществляется от порта USB.

В случае подключения по интерфейсу Ethernet следует подать основное питание на прибор.

- 2. Открыть ПО «OWEN Configurator».
- 3. Выбрать «Добавить устройства».
- 4. В выпадающем меню «Интерфейс» во вкладке «Сетевые настройки» выбрать:
 - Ethernet (или другую сетевую карту, к которой подключен прибор) для подключения по Ethernet.
 - STMicroelectronics Virtual COM Port для подключения по USB.

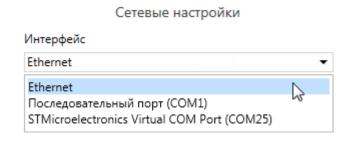


Рисунок 7.1 – Меню выбора интерфейса

Дальнейшие шаги для поиска устройства зависят от выбора интерфейса.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу Ethernet, следует:

- 1. Выбрать «Найти одно устройство».
- 2. Ввести ІР-адрес подключенного устройства.
- 3. Нажать вкладку «Найти». В окне отобразится прибор с указанным IP-адресом.

ПРЕДУПРЕЖДЕНИЕ

Значение ІР-адреса по умолчанию (заводская настройка) — 192.168.1.99.

4. Выбрать устройство (отметить галочкой) и нажать ОК. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу USB и RS-485, следует:

1. В выпадающем меню «Протокол» выбрать протокол Owen Auto Detection Protocol.

Рисунок 7.2 – Выбор протокола

2. Выбрать «Найти одно устройство».

- 3. Ввести адрес подключенного устройства (по умолчанию 1).
- 4. Нажать вкладку «Найти». В окне отобразится прибор с указанным адресом.
- 5. Выбрать устройство (отметить галочкой) и нажать ОК. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Более подробная информация о подключении и работе с прибором приведена в Справке ПО «OWEN Configurator». Для вызова справки в программе следует нажать клавишу **F1**.

7.2 Подключение к облачному сервису «OwenCloud»

Для подключения модуля к облачному сервису следует:

- 1. Зайти на сайт облачного сервиса https://web.owencloud.ru.
- 2. Зарегистрироваться.
- 3. Перейти в раздел «Администрирование» и добавить модуль.
- 4. В качестве идентификатора указать заводской номер.
- 5. В качестве токена ввести пароль.

ПРИМЕЧАНИЕ Если пароль для модуля не задан, подключение к облачному сервису недоступно.

7.3 Ограничение обмена данными при работе с облачным сервисом «OwenCloud»

Облачный сервис «OwenCloud» является надежным хранилищем данных, обмен информации с которым зашифрован модулем. Если на производстве имеются ограничения на передачу данных, то обмен данными с облачным сервисом «OwenCloud» можно отключить. По умолчанию подключение модуля к облачному сервису запрещено. Ограничение доступа и обмена данными с модулем следует настраивать в ПО «OWEN Configurator».

Для разрешения подключения в ПО «OWEN Configurator» следует:

- 1. Установить пароль для доступа к модулю (см. раздел 7.5).
- 2. Задать значение **Вкл.** в параметре «Подключение к OwenCloud» (рисунок 7.3).

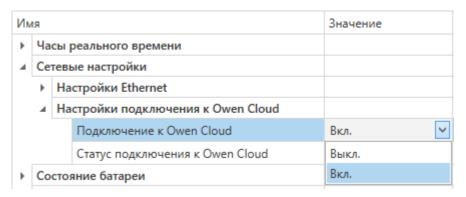


Рисунок 7.3 – Настройка автоматического подключения к облачному сервису

Если доступ к модулю через облачный сервис «OwenCloud» разрешен, то можно настроить следующие ограничения доступа (рисунок 7.4):

- Разрешение конфигурирования доступ к конфигурационным параметрам модуля;
- Управление и запись значений чтение и запись значений выходов модуля;
- Доступ к регистрам Modbus чтение и/или запись значений регистров.

Рисунок 7.4 – Настройка удаленного доступа к модулю

7.4 Настройка сетевых параметров

Для обмена данных модуля в сети Ethernet должны быть заданы параметры, приведенные в таблице 7.1:

Таблица 7.1 - Сетевые параметры модуля

Параметр	Примечание
МАС-адрес	Устанавливается на заводе-изготовителе и является неизменным
ІР-адрес	Может быть статическим или динамическим. Заводская настройка – 192.168.1.99
Маска ІР-адреса	Задает видимую модулем подсеть IP-адресов других устройств. Заводская настройка – 255.255.255.0
ІР-адрес шлюза	Задает адрес шлюза для выхода в Интернет. Заводская настройка – 192.168.1.1

ІР-адрес может быть:

- статический;
- динамический.

Статический IP-адрес устанавливается с помощью ПО «OWEN Configurator» или сервисной кнопки.

Для установки статического IP-адреса с помощью ПО «OWEN Configurator» следует:

- 1. Зайти во вкладку «Сетевые настройки».
- 2. Задать значение в поле «Установить IP адрес».
- 3. Задать значение в поле «Установить маску подсети».
- 4. Задать значение в поле «Установить IP адрес шлюза».

Режим DHCP должен быть настроен как «Выкл».

Для установки статического ІР-адреса с помощью сервисной кнопки следует:

- 1. Подключить модуль или группу модулей к сети Ethernet.
- 2. Запустить ПО «OWEN Configurator» на компьютере, подключенному к той же сети Ethernet.
- 3. Выбрать вкладку «Назначение IP-адресов».
- 4. Задать начальный IP-адрес для первого модуля из группы модулей.
- 5. Последовательно нажимать на модулях сервисные кнопки, контролируя результат в окне программы. В окне ПО «OWEN Configurator» будет отображаться информация о модуле, на котором была нажата кнопка, этому модулю будет присваиваться заданный статический IP-адрес и другие параметры сети. После присвоения адрес автоматически увеличивается на 1.

Для назначения статического IP-адреса с помощью кнопки режим DHCP должен быть настроен как «Разовая установка кнопкой».

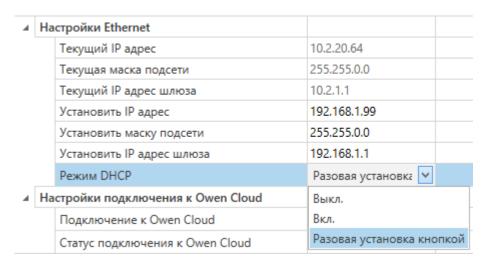


Рисунок 7.5 – Настройка параметра «Режим DHCP»

С помощью сервисной кнопки можно установить IP-адреса сразу для группы модулей (см. справку к ПО «OWEN Configurator», раздел «Назначение IP-адреса устройству»).

Динамический IP-адрес используется для работы с облачным сервисом и не подразумевает работу с Мастером сети Modbus TCP. IP-адрес модуля устанавливается DHCP-сервером сети Ethernet.

ПРИМЕЧАНИЕ

Следует уточнить у служб системного администрирования о наличии DHCP-сервера в участке сети, к которому подключен модуль. Для использования динамического IP-адреса при настройке модуля следует выключить конфигурационный параметр DHCP «Вкл».

ПРЕДУПРЕЖДЕНИЕ

Для применения новых сетевых настроек следует перезагрузить модуль. Если модуль подключен по USB, его также следует отключить от порта.

7.5 Пароль доступа к модулю

Для ограничения доступа к чтению и записи параметров конфигурации и для доступа в облачный сервис «OwenCloud» используется пароль.

Установить или изменить пароль можно с помощью ПО «OWEN Configurator».

В случае утери пароля следует восстановить заводские настройки.

По умолчанию пароль не задан.

7.6 Обновление встроенного ПО

Встроенное ПО модуля обновляется с помощью интерфейсов:

- USB;
- Ethernet (рекомендуется).

Для обновления встроенного по интерфейсу USB следует:

- 1. В момент включения питания модуля нажать и удерживать сервисную кнопку. Модуль перейдет в режим загрузчика.
- 2. Обновить ПО с помощью специальной утилиты. Утилита доступна на сайте www.owen.ru.

Для обновления встроенного ПО по интерфейсу Ethernet следует:

1. В ПО «OWEN Configurator» выбрать вкладку «Прошить устройство».

ПРЕДУПРЕЖДЕНИЕ

Для обновления встроенного программного обеспечения через ПО «OWEN Configurator» следует отключить прибор от удаленного облачного сервиса «OwenCloud».

- 2. Выполнять указания программы (файл встроенного ПО размещен на сайте www.owen.ru).
- 3. Перезагрузить модуль.

Во время обновления по интерфейсу Ethernet проверяется целостность файла встроенного ПО и контрольной суммы.

ПРЕДУПРЕЖДЕНИЕ

Для завершения обновления встроенного ПО следует перезагрузить модуль. Если модуль подключен по USB, его также следует отключить.

7.7 Настройка часов реального времени

Значение часов реального времени (RTC) можно установить или считать с прибора через регистры Modbus, а также с помощью ПО «OWEN Configurator» (см. справку к ПО «OWEN Configurator», раздел «Настройка часов»).

Для установки нового времени через регистры Modbus следует:

- 1. Записать значение времени в соответствующие регистры.
- 2. Установить на время не менее 1 секунды значение 1 в регистре обновления текущего времени.
- 3. Записать в регистр обновления текущего времени значение 0.

Следующая запись текущего времени может быть произведена через 1 секунду.

7.8 Восстановление заводских настроек

ВНИМАНИЕ

После восстановления заводских настроек все ранее установленные настройки, кроме сетевых будут удалены.

Для восстановления заводских настроек и сброса установленного пароля следует:

- 1. Включить питание прибора.
- 2. Нажать и удерживать сервисную кнопку более 12 секунд.
- 3. Выключить и включить прибор.

После включения прибор будет работать с настройками по умолчанию.

7.9 Принудительное обнуление счетчика

Если счетчик состояний входа переполнился, то соответствующий регистр обнуляется автоматически. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения счетчика.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

8.2 Замена батареи

В модуле для питания часов реального времени используется сменная батарея типа CR2032.

Следует заменить батарею в случае наступления хотя бы одного из событий:

- мигает светодиод «Авария» (засвечивается на 200 мс с интервалом 3 секунды). После выключения питания заряда батареи хватит приблизительно на 2 недели работы часов реального времени;
- прошло 6 лет с момента замены батареи.

Для замены батареи следует:

- 1. Отключить питание модуля и подключенных устройств.
- 2. Для отсоединения клеммных колодок следует выполнить действия:
 - а. Поднять крышку 1.
 - b. Выкрутить два винта 3.
 - с. Снять колодку 2, как показано на рисунке.

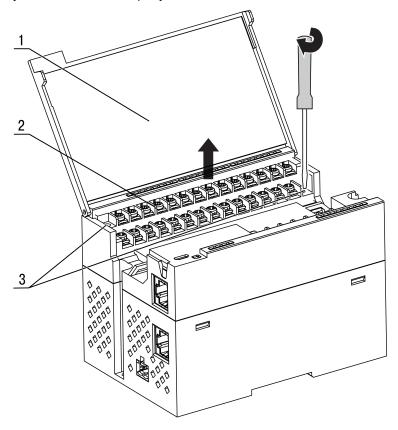


Рисунок 8.1 – Снятие первой клеммной колодки модуля

ПРЕДУПРЕЖДЕНИЕ

При выкручивании винтов крепления клеммная колодка поднимается, поэтому чтобы избежать перекоса, рекомендуется выкручивать винты поочередно по несколько оборотов за один раз.

3. Для снятия второй колодки проделать действия п 2.

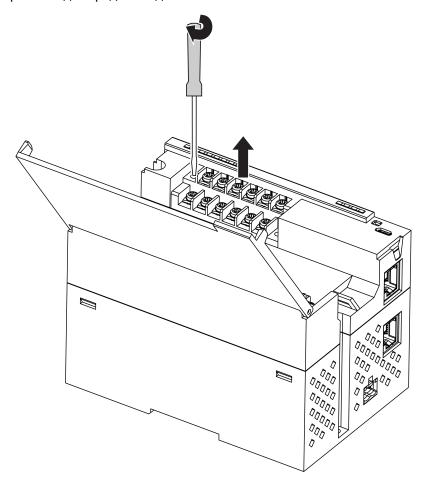


Рисунок 8.2 – Снятие второй клеммной колодки

- 4. Снять модуль с DIN-рейки.
- 5. Поочередно вывести зацепы из отверстий с одной и другой стороны корпуса и снять верхнюю крышку.

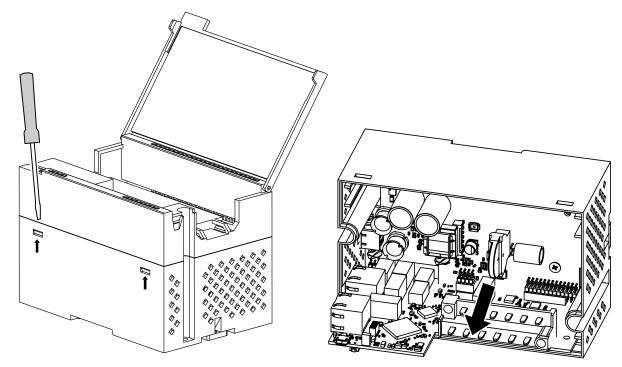


Рисунок 8.3 – Замена батареи

- 6. Заменить батарею. Рекомендуемое время замены батареи не более 1 минуты. Если батарея будет отсутствовать в приборе дольше 1 минуты, следует ввести корректное значение времени.
- 7. Собрать прибор в обратном порядке и установить на объекте.

\triangle

ВНИМАНИЕ

Запрещается использовать батарею другого типа. При установке батареи следует соблюдать полярность.

После сборки и включения модуля следует убедиться в корректности показаний часов. При необходимости следует скорректировать показания часов реального времени в ПО «OWEN Configurator».

9 Комплектность

Наименование	Количество		
Модуль	1 шт.		
Паспорт и Гарантийный талон	1 экз.		
Краткое руководство по эксплуатации	1 экз.		
Кабель патч-корд UTP 5e 150 мм	1 шт.		
Клемма питания 2EGTK-5-02P-14	1 шт.		
Заглушка разъема Ethernet	1 шт.		
Методика проверки	1 экз.*		
* Поставляется по требованию заказчика			

ПРЕДУПРЕЖДЕНИЕ Изготовитель оставляет за собой право внесения дополнений в комплектность модуля.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ IEC 61131-2-2012;
- напряжение питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- МАС-адрес.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- дата изготовления прибора.

11 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

Приложение А. Расчет вектора инициализации для шифрования файла архива

Для расшифровки файла архива в качестве вектора инициализации следует использовать хешфункцию. Хэш-функция возвращает 8 байт (тип long long).

Пример реализации хеш-функции на языке программирования С:

```
typedef union {
        struct {
                unsigned long lo;
                unsigned long hi;
        };
        long long hilo;
}LONG LONG;
long long Hash8(const char *str) { // На основе Rot13
        LONG LONG temp;
        temp.lo = 0;
        temp.hi = 0;
        for ( ; *str; )
                temp.lo += (unsigned char) (*str);
                temp.lo -= (temp.lo << 13) | (temp.lo >> 19);
                str++;
                if (!str) break;
                temp.hi += (unsigned char) (*str);
                temp.hi -= (temp.hi << 13) | (temp.hi >> 19);
                str++;
        }
        return temp.hilo;
}
```


Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-53119-1.19