

ПЛК200

Программируемый логический контроллер

EHE

Руководство по эксплуатации

09.2020 версия 1.11

Содержание

Предупреждающие сообщения	4
Меры безопасности	5
Введение	6
Используемые термины и сокращения	7
1 Назначение и функции	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики	9
2.2 Изоляция узлов прибора	
2.3 Условия эксплуатации	
3 Устройство и особенности конструкции	
3.1 Конструкция	
3.2 Индикация	
3.3 Функциональные схемы	
3.4 SD card	
3.5 Тумблер СТАРТ / СТОП	
3.6 Сервисная кнопка	
3.7 Батарея	
3.8 Встроенный источник звукового сигнала	24
3.9 Часы реального времени	
4 Монтаж	
5 Подключение	
5.1 Рекомендации по подключению	
5.2 Подключение питания	
5.3 Назначение контактов клеммника	
5.4 Дискретные входы (FDI и DI)	
5.4.1 Подключение к дискретным входам	
5.5 Дискретные выходы (DO и FDO)	
5.5.1 Подключение нагрузки к дискретным выходам	
5.5.2 Режимы включения выходных элементов	
5.5.3 Диагностика состояния выходов и нагрузки	
5.6 Аналоговые входы	
5.6.1 Подключение датчиков к аналоговым входам	
5.6.2 Принцип работы	
5.7 Интерфейс RS-485	
5.8 Интерфейс Ethernet	
5.8.1 Межсетевой экран (Firewall)	
5.8.2 Типовые схемы сетевых портов	
5.9 USB Device (RNDIS)	
6 Настройка	
6.1 Быстрый старт	
6.2 Управление доступом	
6.3 Обновление встроенного ПО контроллера	
6.4 Восстановление заводских настроек	
6.5 Доступ в консоль	
6.6 Загрузка проекта с SD-накопителя	
6.7 Работа прибора с CODESYS V3.5	
7 Техническое обслуживание	
/ I САПИЧЕСКОЕ ООСЛУЖИВАПИЕ	

8 Маркировка	49
9 Упаковка	49
10 Транспортирование и хранение	49
11 Комплектность	50
12 Гарантийные обязательства	50

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ IEC 61131-2-2012.

Во время эксплуатации и технического обслуживания прибора следует соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

ВНИМАНИЕ

Открытые контакты клемм прибора во время эксплуатации находятся под напряжением величиной до 250 В.

Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании контроллера и подключенных к нему исполнительных механизмов.

ПРЕДУПРЕЖДЕНИЕ

Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера.

ПРЕДУПРЕЖДЕНИЕ

Прибор запрещено использовать при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

В случае применения прибора на объектах, подконтрольных Федеральной службе по экологическому, технологическому и атомному надзору (ФСЭТАН), объектах органов безопасности и охраны правопорядка или иных объектах, потенциально представляющих опасность для жизни и здоровья окружающих, подключение к контроллеру требуется защитить с помощью пароля.

Требования к паролю:

- длина пароля должна составлять не менее 8 символов и не более 32 символов;
- пароль должен содержать буквы латинского алфавита и цифры.

Пароль рекомендуется менять не реже 1 раза в 3 месяца.

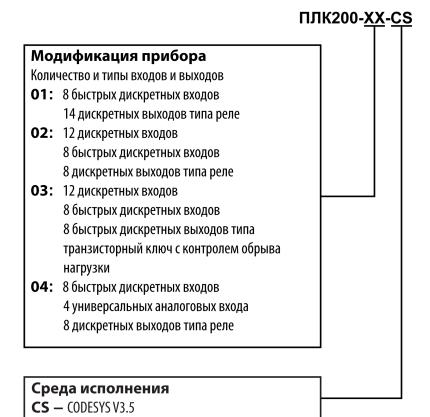
Не допускается подключать прибор к локальной сети Ethernet с выходом в сеть Internet без обеспечения надежных средств межсетевого экранирования.

ПРЕДУПРЕЖДЕНИЕ

Физический доступ к прибору должен быть разрешен только квалифицированному обслуживающему персоналу.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием программируемого логического контроллера ПЛК200 (в дальнейшем по тексту именуемого «прибор» или «контроллер»).



ВНИМАНИЕ

Подключение, регулировка и техническое обслуживание контроллера должны производиться только квалифицированными специалистами, изучившими настоящее Руководство по эксплуатации.

Прибор выпускается согласно ТУ 26.51.70-026-46526536-2018 и имеет декларацию соответствия ТР ТС.

Контроллер изготавливается в нескольких модификациях. Различия между модификациями зашифрованы в условном обозначении:

Пример

Программируемый контроллер ПЛК200-01-CS

У контроллера с этим наименованием будут следующие основные характеристики:

- 8 быстрых дискретных выходов (FDI, до 95 кГц);
- 14 релейных дискретных выходов (DO);
- среда программирования CODESYS V3.5.

Используемые термины и сокращения

ОС – операционная система.

ПК – персональный компьютер.

ПО – программное обеспечение.

СКЗ – среднее квадратичное значение.

ШИМ – широтно-имульсная модуляция.

CODESYS (Controllers Development System) – программное обеспечение, специализированная рабочая среда для программирования логических контроллеров. Торговая марка компании 3S-Smart Software Solutions GmbH.

FTP (File Transfer Protocol) – один из базовых протоколов передачи файлов. С его помощью можно подключаться к FTP-серверам, просматривать содержимое их каталогов и загружать файлы с сервера или на сервер.

HTTP (HyperText Transfer Protocol) – протокол прикладного уровня передачи данных в виде гипертекстовых документов в формате «HTML». В настоящий момент используется для передачи произвольных данных.

HTTPS (HyperText Transfer Protocol Secure) – расширение протокола HTTP для поддержки шифрования в целях повышения безопасности.

SFTP (SSH File Transfer Protocol) – протокол для копирования и выполнения других операций с файлами поверх надёжного и безопасного соединения.

SSH (Secure Shell) – сетевой протокол для безопасного удалённого управления операционной системой и туннелирования TCP-соединений (например, для передачи файлов).

USB – последовательный интерфейс для подключения периферийных устройств к вычислительной технике.

1 Назначение и функции

Контроллер предназначен для построения автоматических систем контроля и для управления производственными технологическими процессами на промышленных предприятиях.

Логика работы контроллера задаётся с помощью среды разработки CODESYS V3.5. Поддерживаются все языки программирования стандарта МЭК 61131-3:

- LD: Релейно-контакторные схемы;
- FBD: Функциональные блоковые диаграммы;
- SFC: Последовательные функциональные диаграммы;
- ST: Структурированный текст;
- IL: Список инструкций.

Документация по программированию контроллера и работе с программным обеспечением приведена на странице прибора на сайте компании www.owen.ru.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Общие технические характеристики

Параметр	Значение (свойства)
Пи	тание
Напряжение питания	1048 В (номинальное 24 В)
Потребляемая мощность, не более:	
– модификация 01	13 Вт
– модификация 02	12 Вт
– модификация 03	10 Вт
– модификация 04	10 Вт
Защита от переполюсовки	Есть
Вычислител	ьные ресурсы
Центральный процессор	RISC-процессор Texas Instruments Sitara AM3358, 800 МГц
Объем флеш-памяти (тип памяти)	512 Мбайт (NAND)
Объем оперативной памяти (тип памяти)	256 Мбайт (DDR3)
Объем Retain-памяти (тип памяти)	64 Кбайт (MRAM)
Время выполнения пустого цикла	2
(стабилизированное)	3 мс
Интерфо	ейсы связи
Ethernet	100 Base-T
Количество портов	2 × Ethernet 10/100 Мбит/с (RJ45)
	Modbus TCP (Master / Slave)
Поддерживаемые промышленные протоколы*	OPC UA (Server)
	MQTT
	NTP
Поддерживаемые прикладные протоколы*	FTP SSH
Поддерживаемые прикладные протоколы	HTTP
	HTTPS
R	6-485
Количество портов	1
	Modbus RTU (Master / Slave)
Поддерживаемые протоколы*	Modbus ASCII (Master / Slave)
	OBEH (Master)
Скорость передачи	1200, 2400, 4800, 9600,
· · ·	19200, 38400, 57600, 115200 бит/с
Подтягивающие резисторы	Есть
	Device (DNDIE)
Количество портов	1 × micro USB (RNDIS)
	CODESYS Gateway
Поддерживаемые протоколы	FTP SSH
Поддерживаемые протоколы	HTTP
	HTTPS
Подключаем	ые накопители
	card
Количество разъёмов	1
Тип	microSD
	4 ΓБ (microSD)
Максимальная ёмкость	32 ГБ (microSDHC)
	512 ГБ (microSDXC)
Поддерживаемые файловые системы	FAT16, FAT32, ext4, NTFS (read only)
-	ного времени
Погрешность хода, не более:	
– при температуре +25 °C	3 секунд в сутки
– при температурах -40 °C и +55 °C	18 секунд в сутки
Тип источника питания	Батарея CR2032
Срок работы на одной батарее	5 лет

Продолжение таблицы 2.1

Параметр	Значение (свойства)
Общие	сведения
Габаритные размеры	(82 × 124 × 83) ±1 мм
Масса, не более	0,6 кг
Степень защиты корпуса по ГОСТ 14254-96	IP20
Индикация на передней панели	Светодиодная
Встроенное оборудование	Источник звукового сигнала Двухпозиционный тумблер СТАРТ / СТОП Сервисная кнопка
Средняя наработка на отказ**	60 000 ч
Средний срок службы	8 лет

ПРИМЕЧАНИЕ

Таблица 2.2 – Дискретные входы (DI и FDI)

	Значение (свойства)		
Параметр	Дискретные входы (DI)	Быстрые дискретные входы (FDI)	
Режимы работы	определение логического уровня	определение логического уровня счётчик высокочастотных импульсов измерение частоты обработка сигналов энкодера	
Тип входов по ГОСТ IEC 61131-2	1	1	
Максимальный ток «логической единицы»	5,5	мА	
Максимальный ток «логического нуля»	1,2 мА		
Напряжение «логической единицы»	930 B		
Напряжение «логического нуля»	05,5 B		
Гистерезис выключения «логической единицы», не менее	0,5 B		
Подключаемые входные устройства	контактные датчики, трехпроводные датчики, имеющие на выходе транзистор n-p-n или p-n-p-типа с открытым коллектором	контактные датчики, трехпроводные датчики, имеющие на выходе транзистор n-p-n или p-n-p-типа с открытым коллектором, AB и ABZ энкодеры	
Минимальная длительность импульса, воспринимаемая входом	3 мс*	5 мкс	
Максимальная частота входного сигнала	300 Гц*	95 кГц 45 кГц**	

Таблица 2.3 – Аналоговые входы (AI)

Па	араметр	Значение
Подключаемые сигн	налы	см. таблицу 2.4
Разрядность АЦП		16 бит
Время опроса	унифицированные сигналы	не более 0,6 с
одного входа*	TC	не более 0,9 с
	ТП	не более 0,6 с

^{*} Поддерживается реализация нестандартных протоколов с помощью системных библиотек.

^{**} Кроме электромеханических переключателей и элемента питания часов реального времени.

^{*} Определяется длительностью цикла контроллера. ** При обработке сигналов энкодера (см. раздел 5.4)

Продолжение таблицы 2.3

Па	раметр	Значение
	сопротивления	не более 0,6 с
Предел основной	унифицированные сигналы	±0,25 %
приведенной	TC	±0,25 %
погрешности при	ТΠ	±0,5 %
измерении	сопротивления	±0,25 %
Максимальная допо погрешность, вызва электромагнитных п	нная влиянием	±0,3 %
 изменением темпер	решность, вызванная атуры окружающей) градусов, не более	0,2 предела допускаемой основной приведенной погрешности измерения

\mathbf{i}

ПРИМЕЧАНИЕ

* Поскольку опрос входов выполняется последовательно, общее время опроса равно сумме времен опроса всех активных входов. Если в параметре «Тип датчика» установлено значение «Датчик отключен», датчик исключается из списка опроса.

Таблица 2.4 – Датчики и входные сигналы

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной погрешности
Термопреобр	разователи сопротивления	по ГОСТ 6651-2	2009
Cu 50 (α = 0,00426 °C ⁻¹)	−50+200 °C		
50M (α = 0,00428 °C ⁻¹)	–180…+200 °C		
Pt 50 (α = 0,00385 °C-1)	–200…+850 °C		
50Π (α = 0,00391 °C ⁻¹)	–200+850 °C		
Cu 100 (α = 0,00426 °C ⁻¹)	−50+200 °C		
100M (α = 0,00428 °C ⁻¹)	–180+200 °C		
Pt 100 (α = 0,00385 °C ⁻¹)	–200…+850 °C		
100Π (α = 0,00391 °C-1)	–200…+850 °C		
Ni 100 (α = 0,00617 °C ⁻¹)	−60+180 °C		
Pt 500 (α = 0,00385 °C ⁻¹)	–200…+850 °C	0.4.00	. 0.05.0/
500Π (α = 0,00391 °C ⁻¹)	–200…+850 °C	0,1 °C	± 0,25 %
Cu 500 (α = 0,00426 °C ⁻¹)	−50+200 °C		
500M (a=0,00428 °C-1)	–180…+200 °C		
Ni500 (α = 0,00617 °C ⁻¹)	−60+180 °C		
Cu 1000 (α = 0,00426 °C-1)	−50+200 °C		
1000M (α = 0,00428 °C-1)	–180…+200 °C		
Pt 1000 (α = 0,00385 °C-1)	–200…+850 °C		
1000Π (α = 0,00391 °C-1)	–200…+850 °C		
Ni 1000 (α = 0,00617 °C-1)	−60+180 °C		
ТСМ гр. 23	−50+200 °C		
Термоэлектри	ческие преобразователи п	о ГОСТ Р 8.585-	2001
TXK (L)	–200+800 °C		
ТЖК (Ј)	–200+1200 °C	2.4.00	
THH (N)	–200+1300 °C		10 F 0/
TXA (K)	–200+1360 °C	0,1 °C	±0,5 %
ТПП (S)	–50+1750 °C		
TΠΠ (R)	–50+1750 °C	1	

Продолжение таблицы 2.4

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной погрешности
TMK (T)	−250+400 °C		
ТПР (В)	+200+1800 °C		
TBP (A-1)	0+2500 °C		
TBP (A-2)	0+1800 °C		
TBP (A-3)	0+1800 °C		
Унифицированные сигналы по ГОСТ 26.011-80			
–1+1 B	0100 %		
05 мА	0100 %	0,1 %	± 0,25 %
020 мА	0100 %	0,1 70	1 0,23 /0
420 мА	0100 %		
	Сигнал постоянного напряжения		
–50+50 мВ	0100 %	0,1 %	± 0,25 %
	Сигналы резистивного типа		
02 кОм	0100 %	1	± 0,25
05 кОм	0100 /0	'	± 0,20
Термоэлектр	рический преобразователь т	ипа L по DIN 4	3710
tP.tL	–200…+900 °C	1 °C	не регламентируется

Таблица 2.5 – Дискретные выходы (DO) типа электромагнитное реле

Параметр	Значение (свойства)	
Тип контакта	Нормально разомкнутый контакт	
Режимы работы	переключение логического состояния	
Максимальный ток коммутации	5 А (при переменном напряжении не более 250 В (СКЗ), 50 Гц, резистивная нагрузка 3 А (при постоянном напряжении не более 30 В, резистивная нагрузка)	
Максимальное напряжение на контакты реле	264 В (СКЗ) переменного напряжения 30 В постоянного напряжения	
Минимальный ток коммутации	10 mA	
Категория применения по ГОСТ IEC 60947-5-1:2014	AC-15, C300*	
Механический ресурс реле, не менее	5 000 000 переключений	
Электрический ресурс реле, не менее	35 000 переключений при 3 A, 30 В постоянного напряжения 50 000 переключений при 5 A 250 В (СКЗ) переменного напряжения 50 000 переключений при категории применения АС-15, С300*	
Время переключения контактов реле из состояния «лог. 0» в «лог. 1», не более	10 мс	

i

ПРИМЕЧАНИЕ

* Управление электромагнитами переменным напряжением до 300 В (СКЗ) и полной мощностью до 180 ВА

Таблица 2.6 – Дискретные выходы (DO и FDO) типа транзисторный ключ

Значение (свойства)	
переключение логического сигнала, генерация ШИМ сигнала, генерация заданного количества импульсов	
103	6 B
Верхний ключ	Верхний и нижний ключи
0,85 A	0,15 A
1,3 A	0,19 A
10 кГц	60 кГц
10 мкс	1 мкс
100 000 мкФ	1 мкФ*
защита от короткого замыкания при включении питания защита от пониженного питания выходов защита от перегрева выходного каскада защита от перегрузки по току выхода защита от обратного тока самоиндукции	
	переключение логического сигнала, го заданного количей 103 Верхний ключ 0,85 А 1,3 А 10 кГц 10 мкс 100 000 мкФ защита от короткого замыка защита от перегрева защита от перегрева защита от перегрузина от перегрузи защита от перегрузи за

2.2 Изоляция узлов прибора

В контроллере реализовано два типа изоляции.

Таблица 2.7 – Типы изоляции

Тип	Описание
Основная (О)	Изоляция для частей оборудования, находящихся под напряжением, с целью защиты от поражения электрическим током. Электрическая прочность основной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения, величина которого различна для различных цепей прибора
Усиленная (У)	Отдельная система изоляции для частей под напряжением со степенью защиты от поражения электрическим током, эквивалентной двойной изоляции согласно ГОСТ IEC 61131-2-2012. Электрическая прочность усиленной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения 3000 В (действующее значение) и контролем длины путей утечек

Схемы прочности гальванической изоляции для разных модификаций контроллера приведены на рисунках ниже.

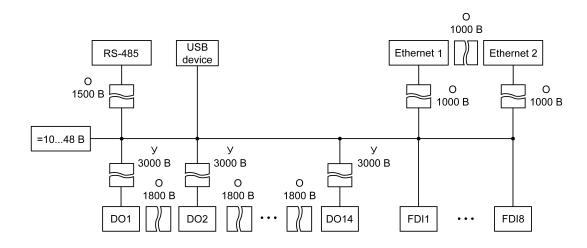


Рисунок 2.1 – Схема электрической прочности изоляции ПЛК200-01

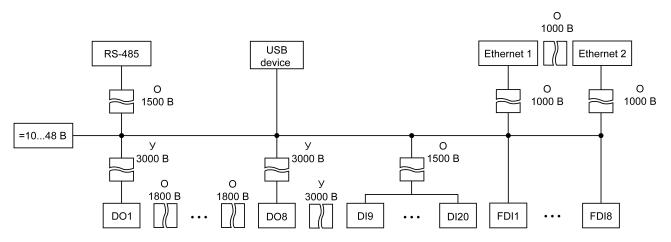


Рисунок 2.2 – Схема электрической прочности изоляции ПЛК200-02

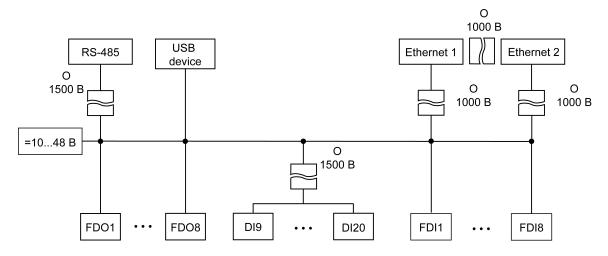


Рисунок 2.3 – Схема электрической прочности изоляции ПЛК200-03



Рисунок 2.4 - Схема электрической прочности изоляции ПЛК200-04

2.3 Условия эксплуатации

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ IEC 61131-2. По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса A по ГОСТ 30804.6.3.

Прибор предназначен для эксплуатации в следующих условиях:

- температура окружающего воздуха от минус 40 до плюс 55 °C;
- относительная влажность воздуха от 10 % до 95 % (при +35 °C без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- допустимая степень загрязнения 2 по ГОСТ IEC 61131-2.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

Прибор имеет класс защиты от поражения электрическим током II по ГОСТ IEC 61131-2.

3 Устройство и особенности конструкции

3.1 Конструкция

Контроллер выпускается в конструктивном исполнении для крепления на DIN-рейке (35 мм) или на стене.

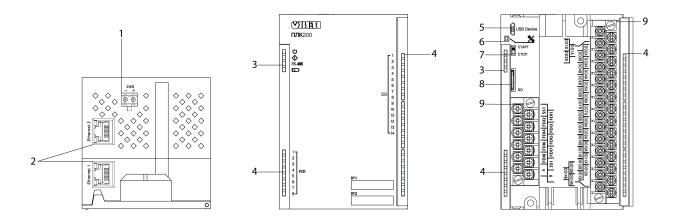


Рисунок 3.1 - Внешний вид

Таблица 3.1 - Описание элементов конструкции

Nº	Наименование	Описание				
1	Порт 24 В	Порт питания (см. раздел 5.2)				
2	Ethernet (Разъем RJ45)	Порты Ethernet 100 Base-Т для подключения контроллера к локальным сетям, передачи данных и программирования (см. раздел 5.8)				
3	Светодиодные индикаторы состояния контроллера	Индикация состояния контроллера (см. раздел 3.2): Питание ∪ Работа Ф Передача данных по интерфейсу RS-485 Батарея ₪				
4	Светодиодные индикаторы состояния входов и выходов	FDI – быстрые дискретные входы DI – дискретные входы FDO – быстрые дискретные выходы DO – дискретные выходы AI – аналоговые входы				
5	USB Device (Разъем micro USB)	Порт для настройки контроллера, загрузки проектов и отладки ПО (см. раздел 5.9)				
6	Сервисная кнопка	Выполняет следующие функции: • дискретный вход; • обновление встроенного ПО.				
7	Тумблер СТАРТ/СТОП	Двухпозиционный переключатель (см. раздел 3.5)				
8	SD	Слот для подключения SD-карты (см. раздел 3.4)				
9	Съемные клеммные колодки	Для подключения датчиков, исполнительных механизмов и интерфейса RS-485 (см. раздел 5.3)				

3.2 Индикация

Светодиодная индикация на передней панели контроллера отображает:

- состояние входов и выходов;
- наличие питания;
- работу пользовательской программы;
- передачу данных по интерфейсу RS-485;
- состояние батареи часов реального времени.

Таблица 3.2 - Описание индикации

Индикатор	Состояние индикатора	Описание			
Питацио (I) (20полн ій)	Светится	Питание подано			
Питание 🖰 (зелёный)	Не светится	Питание выключено			
	Мигает	Идет загрузка пользовательской программы			
Работа Ф (зелёный)	Светится	Пользовательская программа загрузилась и запустилась			
	Не светится	Пользовательская программа остановлена или не загружена			
DC 495 (2055)	Не светится	Обмен данными отсутствует			
RS-485 (зелёный)	Мигает	Обмен данными			
	Светится зелёным	Батарея часов реального времени заряжена			
Батарея ₪ (зелёный / красный)*	Мигает красным	Рекомендуется заменить батарею часов реального времени			
(зеленый / красный)	Светится красным	Батарея часов реального времени полностью разряжена			
Индикаторы состояния	Не светится	Вход выключен			
дискретных входов FDI, DI (зелёный)	Светится	Вход включен			
Миликатори и состояния	Не светится	Выход выключен			
Индикаторы состояния дискретных выходов FDO,	Светится зелёным	Выход включен			
DO (зелёный / красный)	Светится красным	Отсутствует питание или авария (неисправность выхода)**			
	Светится зелёным	Измерение успешно			
Индикаторы состояния	Не светится	Вход выключен			
аналоговых входов AI (зелёный / оранжевый /	Не светится короткое время	Измерение на входе			
красный)	Оранжевый	Некритическая ошибка***			
	Красный	Критическая ошибка***			
— Примецание					

ПРИМЕЧАНИЕ

- * Измерение напряжения батареи происходит раз в сутки после подачи питания. ** Только для ПЛК200-03 (см. таблицу 5.10).

Таблица 3.3 – Индикация ошибок аналоговых входов

Ошибка	Индикация
Значение заведомо неверно	Оранжевый
Данные не готовы*	Оранжевый
Велика/мала температура свободных концов ТП	Оранжевый
Измеренное значение слишком велико/мало	Оранжевый
Короткое замыкание датчика	Красный
Обрыв датчика	Красный
Отсутствие связи с АЦП	Красный
Некорректный калибровочный коэффициент	Оранжевый

ПРИМЕЧАНИЕ

Необходимо дождаться результатов первого измерения после включения прибора

^{***} Cм. таблицу 3.3.

3.3 Функциональные схемы

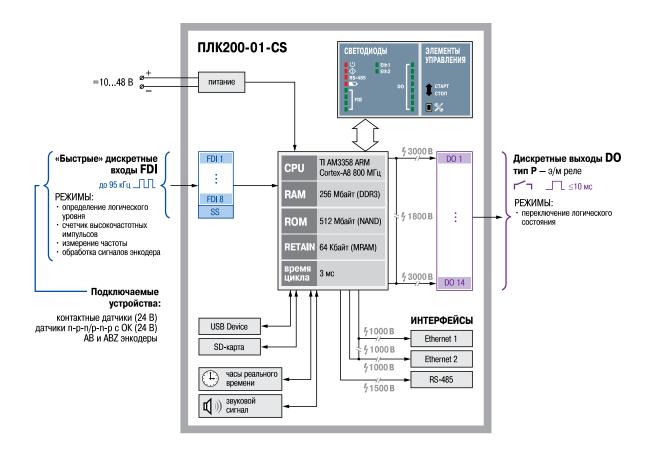


Рисунок 3.2 – Функциональная схема ПЛК200-01-CS

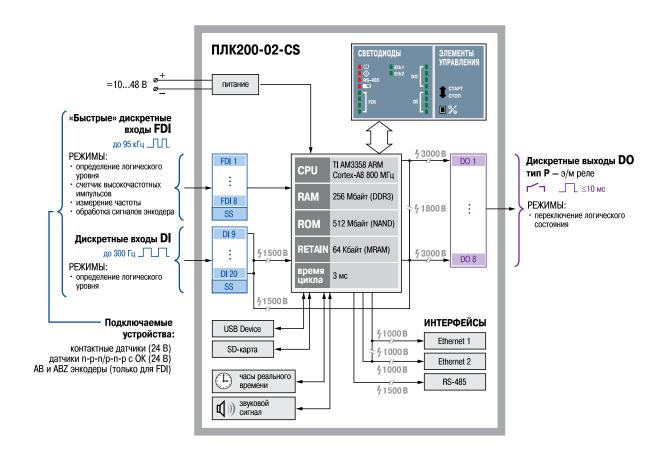


Рисунок 3.3 - Функциональная схема ПЛК200-02-CS

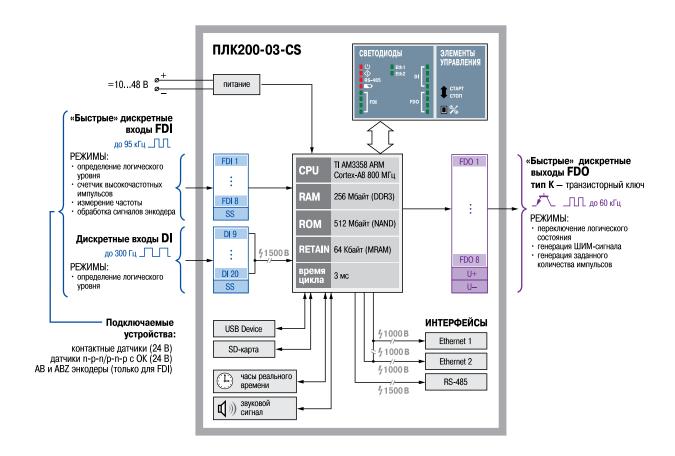


Рисунок 3.4 - Функциональная схема ПЛК200-03-CS

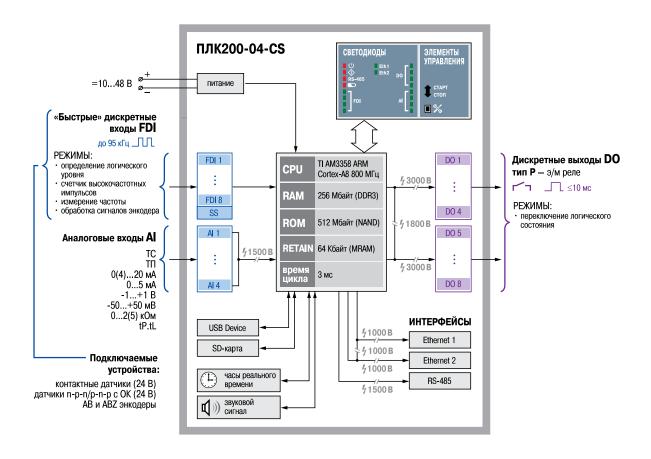


Рисунок 3.5 – Функциональная схема ПЛК200-04-CS

3.4 SD card

На лицевой части прибора под центральной крышкой расположен слот SD для подключения карты памяти MicroSD.

Во время работы со слотом SD следует учитывать следующие особенности:

- для перепрошивки, архивации и загрузки пользовательского проекта необходимо использовать карту MicroSD с файловой системой FAT16 или FAT32;
- интерфейс SD поддерживает карты памяти MicroSD стандартов SD, SDHC и SDXC;

Максимальная емкость определяется типом используемой карты: 4 ГБ (microSD), 32 ГБ (microSDHC) и 512 ГБ (microSDXC).

• если карта установлена в разъем неправильно, то данные на карте и слот на приборе могут быть повреждены.

Для безопасного извлечения MicroSD следует:

- 1. Завершить все процедуры записи.
- 2. Извлечь карту памяти.

ВНИМАНИЕ

Перед извлечением карты памяти следует размонтировать ее с помощью таргет-файла в CODESYS (узел Drives, канал MMC Unmount).

ВНИМАНИЕ

Размонтирование карты памяти в момент активных операций с ней может привести к потере данных или вывести карту из строя.

ВНИМАНИЕ

Некоторое время после выключения питания прибор завершает операции с картой.

3.5 Тумблер СТАРТ / СТОП

Под крышкой контроллера находится двухпозиционный переключатель **СТАРТ** / **СТОП**. Принцип работы тумблера представлен на рисунке 3.6.

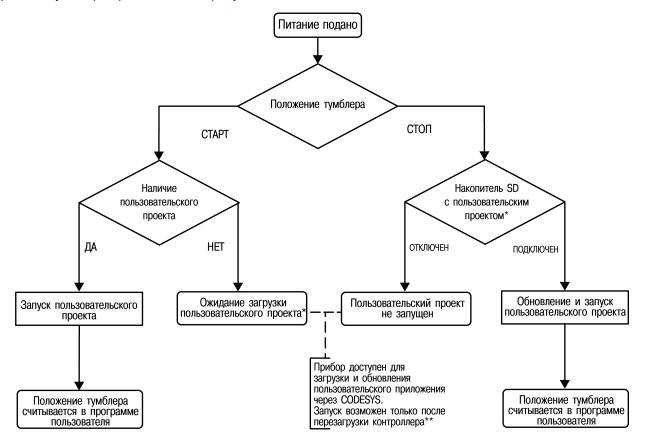


Рисунок 3.6 – Принцип работы тумблера

** Перезагрузить контроллер можно выключением и включением питания.

ПРИМЕЧАНИЕ

Во время работы пользовательской программы тумблер СТАРТ / СТОП может использоваться как дискретный вход (см. Описание таргет-файлов).

3.6 Сервисная кнопка

На передней панели под крышкой находится Сервисная кнопка, которая выполняет следующие функции:

- дискретный вход (см. Описание таргет-файлов);
- обновление встроенного ПО (см. раздел 6.3).

3.7 Батарея

В приборе используется сменная батарея типа CR2032. Батарея предназначена для питания часов реального времени.

Если заряд батареи опускается ниже 1,2 В, то индикатор разряда батареи (светодиод ☐ на лицевой стороне прибора) мигает. Постоянное красное свечение индикатора сигнализирует о необходимости замены батареи. Измерение напряжения батареи производится раз в сутки после подачи питания.

■ ПРИМЕЧАНИЕ

Рекомендуемое время замены батареи не более 1 минуты. Если батарея будет отсутствовать более долгое время, следует ввести корректное значение времени или синхронизировать часы контроллера с NTP-сервером.

Настройки даты и времени могут быть изменены в Web-конфигураторе (страница **Время** главного меню **Система**) или в узле CODESYS для работы с системным временем (см. Описание таргет-файлов).

Для замены батареи следует:

- 1. Отключить питание контроллера и подключенных устройств.
- 2. Для отсоединения клеммных колодок следует выполнить действия:
 - а. Поднять крышку 1.
 - b. Выкрутить два винта 3.
 - с. Снять колодку 2, как показано на рисунке.

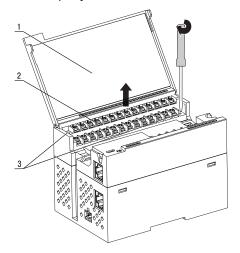


Рисунок 3.7 - Снятие первой клеммной колодки контроллера

ПРЕДУПРЕЖДЕНИЕ

При выкручивании винтов крепления клеммная колодка поднимается, поэтому чтобы избежать перекоса, рекомендуется выкручивать винты поочередно по несколько оборотов за один раз.

3. Для снятия второй колодки повторить действия, описанные в пункте 2.

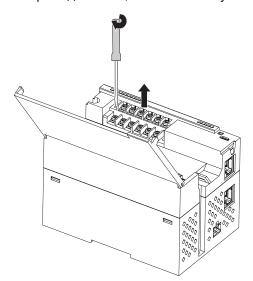


Рисунок 3.8 - Снятие второй клеммной колодки

- 4. Снять контроллер с DIN-рейки.
- 5. Поочередно вывести зацепы из отверстий с одной и другой стороны корпуса и снять верхнюю крышку.

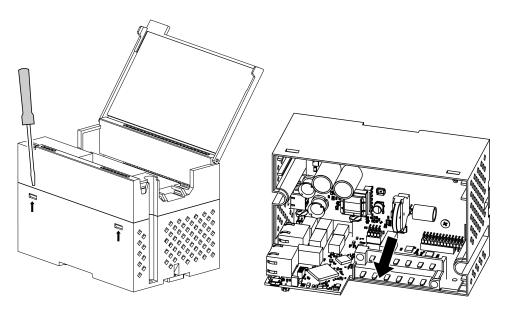


Рисунок 3.9 - Замена батареи

- 6. Заменить батарею.
- 7. Собрать прибор в обратном порядке и установить на объекте.

ВНИМАНИЕ

Следует использовать батарею только типа CR2032. Во время установки батареи следует соблюдать полярность.

3.8 Встроенный источник звукового сигнала

Контроллер оснащён маломощным звуковым излучателем. Во время работы пользовательской программы звуковой излучатель может использоваться как дискретный выход (см. Описание таргетфайлов). Излучатель может быть использован, например, для аварийной сигнализации или во время отладки программы. Частота и громкость звукового сигнала фиксированы и не подлежат изменению.

3.9 Часы реального времени

Прибор оснащен встроенными часами реального времени (RTC). Источником питания часов является батарея. Энергии полностью заряженной батареи хватает на непрерывную работу часов реального времени в течение 5 лет. В случае эксплуатации контроллера при температуре на границах рабочего диапазона время работы часов сокращается.

В случае необходимости можно синхронизировать часы контроллера с удаленным NTP сервером. Также контроллер может выступать в качестве NTP сервера для устройств, подключенных к нему по интерфейсу Ethernet.

4 Монтаж

ВНИМАНИЕ

Во время монтажа прибора необходимо учитывать меры безопасности.

Прибор устанавливается в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания влаги, грязи и посторонних предметов.

Для установки прибора следует:

- 1. Убедиться в наличии свободного пространства для подключения прибора и прокладки проводов.
- 2. Закрепить прибор на DIN-рейке или на вертикальной поверхности с помощью винтов (см. рисунок 4.1).

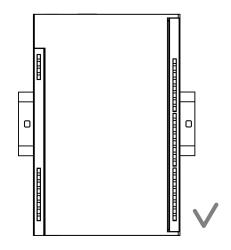
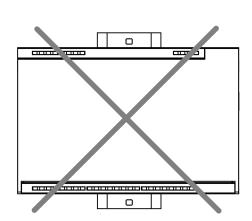
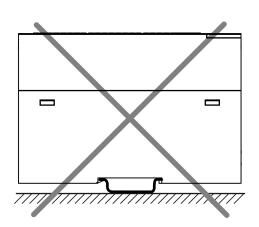




Рисунок 4.1 – Верный монтаж

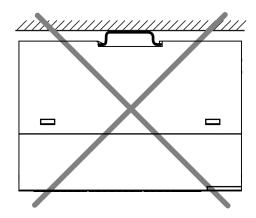
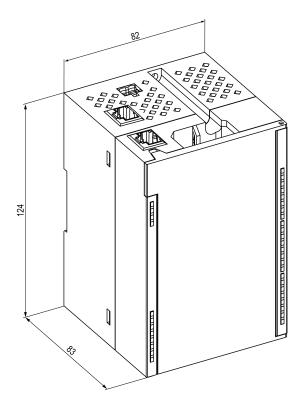



Рисунок 4.2 – Неверный монтаж

ВНИМАНИЕ

Во время монтажа необходимо свободное пространство минимум в 50 мм над контроллером и под ним.

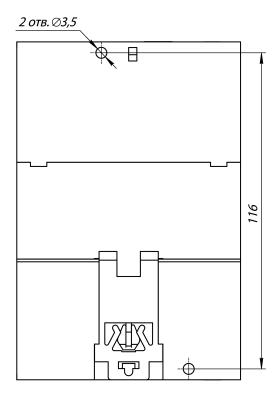


Рисунок 4.3 – Габаритный чертеж

Рисунок 4.4 – Установочные размеры

Для демонтажа прибора с DIN-рейки следует:

- 1. В проушину защелки вставить острие отвертки.
- 2. Отжать защелку по стрелке 1.
- 3. Отвести контроллер от DIN-рейки по стрелке 2.

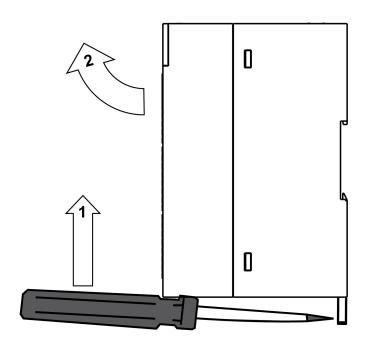


Рисунок 4.5 – Демонтаж прибора с DIN-рейки

5 Подключение

5.1 Рекомендации по подключению

Для обеспечения надежности электрических соединений рекомендуется использовать медные многожильные кабели. Концы кабелей следует зачистить, потом залудить их или использовать кабельные наконечники. Жилы кабелей следует зачищать так, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение жил кабелей должно быть не более 0,75 мм².

Общие требования к линиям соединений:

- во время прокладки кабелей следует выделить линии связи, соединяющие прибор с датчиком, в самостоятельную трассу (или несколько трасс), располагая ее (или их) отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния промышленных электромагнитных помех линии связи прибора с датчиком следует экранировать. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей с экранирующими оплетками следует подключить к контакту функционального заземления (FE) в щите управления;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

При монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии следует прокладывать по схеме «звезда» с обеспечением хорошего контакта с заземляемым элементом;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клемму прибора с маркировкой SS1 / SS2 и заземляющие линии.

5.2 Подключение питания

ВНИМАНИЕ

Допускается применять источник питания с током нагрузки не более 8 А.

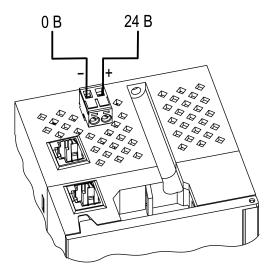


Рисунок 5.1 - Назначение контактов питания

5.3 Назначение контактов клеммника

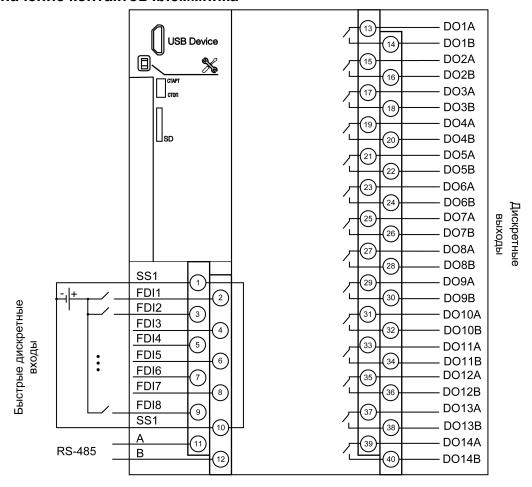


Рисунок 5.2 – Назначение контактов клеммника (модификация 01)

Таблица 5.1 – Назначение контактов клеммника (модификация 01)

Наименование	Назначение			
FDI1 – FDI8	Быстрые дискретные входы			
SS1	Общая точка входов			
DO1A, DO1B – DO14A, DO14B	Дискретные выходы типа реле			
A, B	Клеммы для подключения по интерфейсу RS-485			

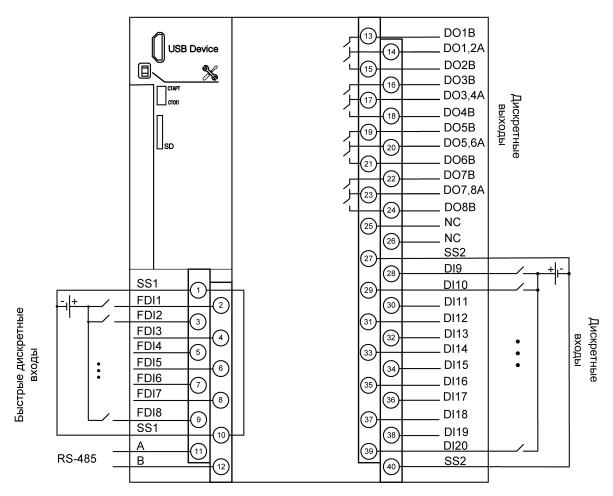


Рисунок 5.3 – Назначение контактов клеммника (модификация 02)

Таблица 5.2 – Назначение контактов клеммника (модификация 02)

Наименование	Назначение
FDI1 – FDI8	Быстрые дискретные входы
SS1	Общие точки входов FDI1 – FDI8
DI9 – DI20	Дискретные входы
SS2	Общие точки входов DI9 – DI20
DO1A, DO1B – DO8A, DO8B	Дискретные выходы типа реле
A, B	Клеммы для подключения по интерфейсу RS-485
NC (Not connected)	Нет подключения

(I) He

ПРЕДУПРЕЖДЕНИЕ

Не допускается подключение проводов к контактам NC (Not connected)

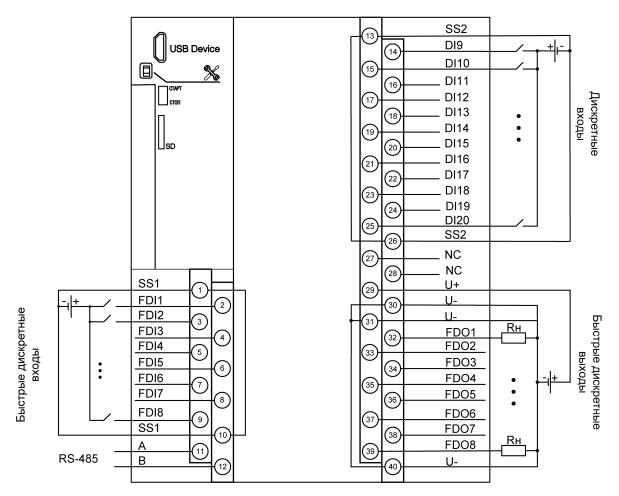


Рисунок 5.4 – Назначение контактов клеммника (модификация 03)

Таблица 5.3 – Назначение контактов клеммника (модификация 03)

Наименование	Назначение
FDI1 – FDI8	Быстрые дискретные входы
SS1	Общие точки входов FDI1 – FDI8
DI9 – DI20	Дискретные входы
SS2	Общие точки входов DI9 – DI20
FDO1 – FDO8	Быстрые дискретные выходы типа транзисторный ключ
A, B	Клеммы для подключения по интерфейсу RS-485
U+, U-	Напряжение питания выходов FDO1 – FDO8
NC (Not connected)	Нет подключения

ПРЕДУПРЕЖДЕНИЕ

Не допускается подключение проводов к контактам NC (Not connected)

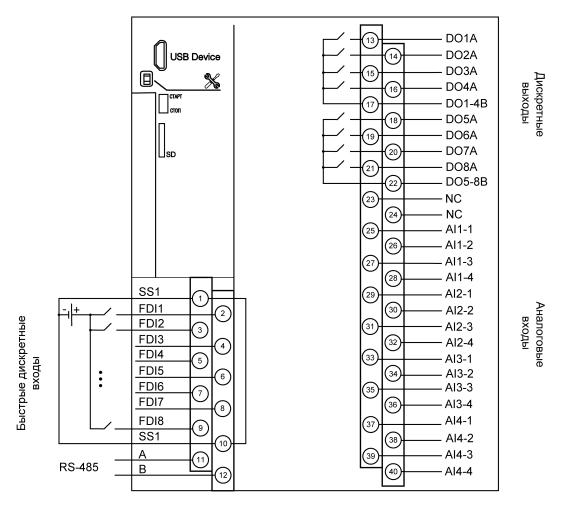


Рисунок 5.5 - Назначение контактов клеммника (модификация 04)

Таблица 5.4 – Назначение контактов клеммника (модификация 04)

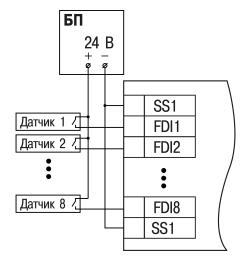
Наименование	Назначение
FDI1 – FDI8	Быстрые дискретные входы
SS1	Общие точки входов FDI1 – FDI8
DO1A, DO1B – DO8A, DO8B	Дискретные выходы типа реле
AI1-1, AI1-2, AI1-3, AI1-4 – AI4- 1, AI4-2, AI4-3, AI4-4	Аналоговые входы
A, B	Клеммы для подключения по интерфейсу RS-485
NC (Not connected)	Нет подключения

ПРЕДУПРЕЖДЕНИЕ

Не допускается подключение проводов к контактам NC (Not connected)

5.4 Дискретные входы (FDI и DI)

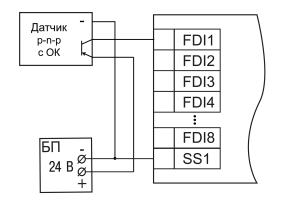
Дискретные входы контроллера (FDI и DI) работают в режиме определения логического уровня. Значения состояния входов хранятся в виде битовой маски.


Быстрые дискретные входы (FDI) также могут работать в дополнительных режимах:

- обработка сигналов энкодера (до 45 кГц);
- измерение частоты (сигнал прямоугольной формы частотой от 0 Гц до 95 кГц);
- подсчёт количества импульсов (до 95 кГц).

• ПРИМЕЧАНИЕ

Подробные сведения о настройке входов изложены в документе Описание таргет-файлов.


5.4.1 Подключение к дискретным входам

Датчик 1 Д DI20 SS2 DI20 SS2

Рисунок 5.6 – Схема подключения контактных датчиков к быстрым дискретным входам FDI1–FDI8

Рисунок 5.7 – Схема подключения контактных датчиков к дискретным входам DI9–DI20 (модификации 02 и 03)

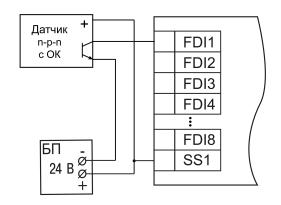
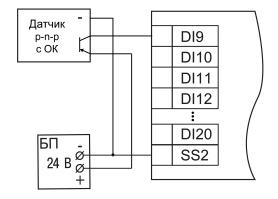



Рисунок 5.8 – Подключение транзисторов типа р-n-p FDI1–FDI8 Рисунок 5.9 – Подключение транзисторов типа п-p-n* FDI1–FDI8

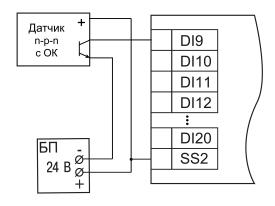


Рисунок 5.10 – Подключение транзисторов типа p-n-p DI9–DI20

Рисунок 5.11 – Подключение транзисторов типа n-p-n DI9-DI20

ПРЕДУПРЕЖДЕНИЕ

*Для подключения транзисторов типа n-p-n к дискретным входам FDI1-FDI8 необходимо использовать отдельный источник питания для входов. Клемма SS1 объединена со входом питания (см. раздел 2.2).

Таблица 5.5 - Подключение энкодеров

№ энкодера 1			2		3		4					
Энкодер АВ	Α	В	_	Α	В	_	Α	В	_	Α	В	
FDI1-8	1	2		3	4	_	5	6	_	7	8	
Энкодер ABZ	Α	В	Z	Α	В	Z			_	_		
FDI1-8	1	2	3	5	6	7						

$\lceil \mathbf{i} \rceil$

ПРИМЕЧАНИЕ

При подключении энкодеров типа p-n-p на клемму SS1 подключается 0 В.

При подключении энкодеров типа n-p-n на клемму SS1 подключается 24 В от отдельного источника питания. Клемма SS1 объединена со входом питания.

5.5 Дискретные выходы (DO и FDO)

Дискретные выходы прибора (DO и FDO) могут работать в одном из следующих режимов:

- переключение логического сигнала;
- генерация заданного количества импульсов;
- генерация ШИМ (только для FDO).

i

ПРИМЕЧАНИЕ

Подробные сведения о настройке дискретных выходов приведены в документе Описание таргетфайлов.

5.5.1 Подключение нагрузки к дискретным выходам

На рисунке 5.12 представлена схема подключения нагрузки к выходам типа «реле».

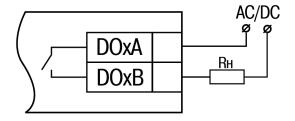


Рисунок 5.12 - Схема подключения нагрузки к дискретным выходам типа «реле»

На рисунке 5.13 представлена схема подключения нагрузки к выходам типа «транзисторный ключ».

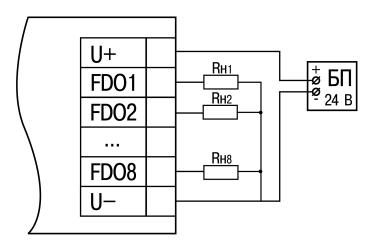


Рисунок 5.13 – Схема подключения внешних связей к дискретным выходам типа «транзисторный ключ» (FDO1 – FDO8)

Положительный потенциал напряжения питания выходов подается на клемму U+ для питания выходов FDO1 – FDO8.

Допускается использовать источники питания с различным номинальным значением выходного напряжения в диапазоне 10...36 В.

Максимальная длина линии питания выходов от источника питания до клеммы U + - не более 30 метров.

ПРЕДУПРЕЖДЕНИЕ

Рекомендуется равномерно распределять нагрузку между клеммами U-. Ток нагрузки на одну клемму U- – не более 3,4 A.

5.5.2 Режимы включения выходных элементов

Быстрые дискретные выходы контроллера могут работать в двух режимах включения:

- верхний ключ (рисунок 5.14) для коммутации нагрузки с меньшей емкостью и большим током;
- верхний и нижний ключи (рисунок 5.15) для коммутации нагрузки с большей емкостью и меньшим током (менее 100 мА).

На одном выходе нельзя включить одновременно два режима.

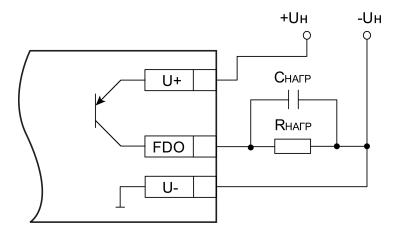


Рисунок 5.14 - Схема подключения нагрузки в режиме включения «верхний ключ»

Рисунок 5.15 – Схема подключения нагрузки в режиме включения «верхний и нижний ключи»

i

ПРИМЕЧАНИЕ

В режиме включения «верхний ключ» для увеличения тока нагрузки допускается подключать нагрузку параллельно к нескольким выходам одной группы.

ī

ПРИМЕЧАНИЕ

Емкость $C_{HA\Gamma P}$, вызванная конструктивными особенностями подключаемой нагрузки, в большинстве случаев является паразитной.

Режим включения «верхний и нижний ключи»

Минимальная длительность импульса при напряжении питания выходов 24 В в зависимости от резистивной и емкостной нагрузки приведена в таблице:

Таблица 5.6 – Минимальная длительность импульса выходного сигнала в режиме включения «верхний и нижний ключи», мкс

Сопроти-	Емкость нагрузки, С _{нагр}								
вление нагрузки, R _{нагр}	0 пФ	1000 пФ	22 нФ	50 нФ	100 нФ	1 мкФ			
250 Ом	1	1	2	4	10	_			
500 Ом	1	1	3	6	20	80			
5 кОм	1	1	4	10	30	100*			

i

ПРИМЕЧАНИЕ

- * При емкости нагрузки 1 мкФ и сопротивлении нагрузки 5 кОм:
- максимальное время нарастания импульса 10 мкс,
- максимальное время спада импульса 20 мкс

Максимальная допустимая частота ШИМ при напряжении питания выходов 24 В при работе на резистивную и емкостную нагрузку приведена в таблице:

Таблица 5.7 – Максимально допустимая частота ШИМ в режиме включения «верхний и нижний ключи», Гц

Сопроти-	Емкость нагрузки, С _{нагр}								
вление нагрузки, R _{нагр}	0 пФ	1000 пФ	22 нФ	50 нФ	100 нФ	1 мкФ			
250 Ом	60 000	50 000	14 000	6 000	3 000	200			
500 Ом	60 000	60 000	31 000	13 500	6 500	500			
5 кОм	60 000	60 000	50 000	35 000	17 000	1 000			

Режим включения «верхний ключ»

Минимальная длительность импульса при напряжении питания выходов 24 В в зависимости от резистивной и емкостной нагрузки приведена в таблице:

Таблица 5.8 – Минимальная длительность импульса выходного сигнала в режиме включения «верхний ключ», мкс

Сопроти-	Емкость нагрузки, С _{нагр}							
вление нагрузки, R _{нагр}	0 пФ	1000 пФ	22 нФ	50 нФ	100 нФ	1 мкФ		
50 Ом	5	10	15	25	40	_		
500 Ом	5	10	30	50	400	1500		
5 кОм	5	20	300	500	5000	10000		

ПРИМЕЧАНИЕ

- * При емкости нагрузки 1 мкФ и сопротивлении нагрузки 5 кОм:
- максимальное время нарастания импульса 10 мкс;
- максимальное время спада импульса 20 мкс

Максимальная частота ШИМ при напряжении питания выходов 24 В и работе на резистивную и емкостную нагрузку приведена в таблице:

Таблица 5.9 – Максимальная частота ШИМ в режиме включения «верхний ключ», Гц

Сопроти-		Емкость нагрузки, С _{нагр}								
вление нагрузки, R _{нагр}	0 пФ	1000 пФ	22 нФ	50 нФ	100 нФ	1 мкФ				
50 Ом	10 000	1 000	650	400	250	_				
500 Ом	10 000	1 000	300	200	25	5				
5 кОм	10 000	500	30	20	2	1				

5.5.3 Диагностика состояния выходов и нагрузки

Выходные элементы типа транзисторный ключ диагностируют неисправности, приведенные в таблице 5.10.

Таблица 5.10 – Диагностика неисправностей выходного каскада

Неисправность	Примечание				
Неисправность всего каскада					
Перегрев выходного каскада	Диагностика вышеуказанных неисправностей происходит				
Повышенное напряжение в цепи питания выходного каскада	вне зависимости от выбранного режима включения выходного каскада и не может быть отключена. В случае фиксирования любой из неисправностей отключается весь выходной каскад.				
Неисправность отдельных выходов каскада					
Перегрев транзисторного выхода	Диагностика вышеуказанных неисправностей происходит вне зависимости от выбранного режима включения выходного каскада и не может быть отключена. В случае				
Перегрузка по току в цепи нагрузки					
Короткое замыкание в цепи нагрузки (только в состоянии выхода – Вкл .)*	фиксирования любой из неисправностей отключается только неисправный выход				
Обрыв нагрузки					
Обрыв нагрузки (только в состоянии выхода – Выкл .)*	Диагностика обрыва нагрузки не настраивается и всегда включена.				
ПРИМЕЧАНИЕ * В режиме работы высокочастотного ШИМ сигнала или при малом значении коэффициента заполнения ШИМ неисправности могут быть не продиагностированы					

В случае фиксирования любой из неисправностей загорается красный светодиод состояния выхода.

ПРЕДУПРЕЖДЕНИЕ

Для работы функции контроля обрыва в цепи нагрузки постоянно присутствует ток не более 1 мкА.

5.6 Аналоговые входы

Входные измерительные устройства в контроллере являются универсальными, т. е. к ним можно подключать любые первичные преобразователи (датчики) и унифицированные сигналы из перечисленных в таблице . К входам контроллера можно подключить одновременно датчики разных типов в любых сочетаниях.

ПРЕДУПРЕЖДЕНИЕ

Для защиты входных цепей контроллера от возможного пробоя зарядами статического электричества, накопленного на линиях связи «контроллер – датчик», перед подключением к клеммнику контроллера их жилы следует на 1-2 секунды соединить с винтом функционального заземления (FE) щита.

Во время проверки исправности датчика и линии связи следует отключить контроллер от сети питания. Чтобы избежать выхода контроллера из строя при «прозвонке» связей следует использовать измерительные устройства с напряжением питания не более 4,5 В. Для более высоких напряжений питания этих устройств отключение датчика от контроллера обязательно.

Параметры линии соединения контроллера с датчиком приведены в таблице 5.11.

Таблица 5.11 – Параметры линии связи контроллера с датчиками

Тип датчика	Длина линий, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
TC	100	15	Трехпроводная, провода равной длины и сечения
тп	20	100*	Термоэлектродный кабель (компенсационный)
Унифицированный сигнал силы тока постоянного напряжение	100	100	Двухпроводная

Продолжение таблицы 5.11

Тип датчика	Длина линий, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
Унифицированный сигнал напряжения постоянного тока	100	50	Двухпроводная
Сигнал сопротивления	10	5	Двухпроводная

i

ПРИМЕЧАНИЕ

* Допускается сопротивление линии более 100 Ом при наличии в цепи источника питания достаточного напряжения

5.6.1 Подключение датчиков к аналоговым входам

5.6.1.1 Подключение термопреобразователя сопротивления

Выходные параметры ТС определяются из НСХ в соответствии с ГОСТ 6651.

Рисунок 5.16 - Схема подключения ТС по трехпроводной схеме

Чтобы избежать влияния сопротивлений соединительных проводов на результаты измерений температуры, подключение датчика к контроллеру следует производить по трехпроводной схеме. Для этого к одному из выводов ТС подключаются одновременно два провода, соединяющих его с контроллером, а к другому выводу – третий соединительный провод. Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу (достаточно использовать одинаковые провода равной длины).

5.6.1.2 Подключение термоэлектрического преобразователя (ТП)

НСХ термопар различных типов в соответствии с ГОСТ Р 8.585.

Если подключение свободных концов ТП непосредственно к контактам контроллера невозможно, то соединение ТП с контроллером необходимо выполнять с помощью компенсационных термоэлектродных проводов или кабелей с обязательным соблюдением полярности их включения. Использование термоэлектродных кабелей позволяет увеличить длину проводников термопары и «перенести» ее свободные контакты к клеммнику контроллера.

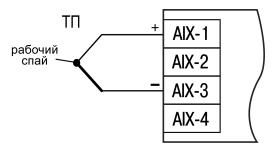


Рисунок 5.17 - Схема подключения ТП

Для корректного вычисления параметров в схеме предусмотрена автоматическая коррекция показаний контроллера по температуре холодного спая. Температуру холодного спая измеряет датчик, расположенный на плате контроллера. Контроллер имеет три встроенных датчика холодного спая.

Автоматическая коррекция обеспечивает правильные показания контроллера в случае изменения температуры окружающей среды.

В некоторых случаях автоматическая коррекция по температуре свободных концов термопар может быть отключена установкой в параметре **CJ-.C** значения **oFF**.

5.6.1.3 Подключение унифицированных сигналов тока и напряжения

Питание активных датчиков должно осуществляться от внешнего блока питания.

Подключать активные преобразователи с выходным сигналом в виде постоянного напряжения (-1...+1 В и -50...+50 мВ) и силы тока постоянного напряжения (0...5 мА, 0...20 мА и 4...20 мА) можно непосредственно к входным контактам контроллера.

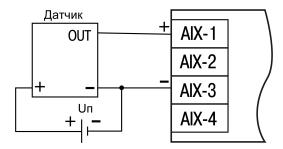


Рисунок 5.18 – Схема подключения датчиков с унифицированным выходным сигналом –50...+50 мВ и –1...1 В по трехпроводной схеме

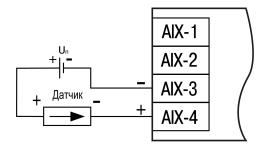


Рисунок 5.19 – Схема подключения датчиков с унифицированным выходным сигналом тока 4... 20 мА по двухпроводной схеме

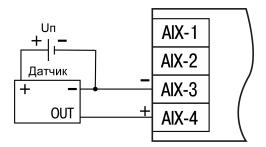


Рисунок 5.20 – Схема подключения датчиков с унифицированным выходным сигналом 0...20 мА и 0...5 мА по трехпроводной схеме

5.6.1.4 Подключение датчика резистивного типа

Контроллер способен обрабатывать сигналы датчиков резистивного типа с сопротивлением 0...2 кОм или 0...5 кОм.

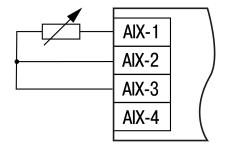


Рисунок 5.21 – Схема подключения датчиков типа 0...2 кОм и 0...5 кОм

5.6.2 Принцип работы

5.6.2.1 Включение датчика в список опроса

Включение любого датчика в список опроса производится автоматически после задания типа его НСХ в параметре **«Тип датчика»**. Если в параметре **«Тип датчика»** установлено значение **«Датчик отключен»**, датчик исключается из списка опроса.

Для каждого входа задается параметр **«Период опроса»**. Период опроса может быть установлен в интервале от 0,6 до 10 секунд. Если опрос входа не может быть произведен с заданной периодичностью (например, если на все входах задан период опроса 0,6 секунд), то контроллер автоматически увеличивает период опроса до наименьшего возможного.

В контроллере предусмотрен режим **«Максимальной загрузки АЦП»**. В этом режиме период опроса будет автоматически настроен на минимальный возможный период для соответствующего типа датчика.

5.6.2.2 Установка диапазона измерения

Во время работы с активными преобразователями, выходным сигналом которых является унифицированный сигнал напряжения постоянного тока или силы тока постоянного напряжения, в контроллере предусмотрена возможность масштабирования шкалы измерения. Текущие величины контролируемых параметров вычисляются с помощью масштабирующих значений, задаваемых индивидуально для каждого входа. Использование масштабирующих значений позволяет отображать контролируемые физические параметры непосредственно в единицах их измерения (атмосферах, килопаскалях, метрах и т. д.).

Для масштабирования шкалы измерения следует установить границы диапазона измерения:

- Ain.L нижняя граница, соответствует минимальному уровню выходного сигнала датчика;
- Ain.Н верхняя граница, соответствует максимальному уровню выходного сигнала датчика.

Дальнейшая обработка сигналов датчика осуществляется в заданных единицах измерения по линейному закону (прямопропорциональному при Ain. H > Ain. L или обратно пропорциональному при Ain. H < Ain. L). Расчет текущего значения контролируемого датчиком параметра производится по формуле:

При
$$Ain.L < Ain.H$$
 $\Pi_{\text{изм}} = Ain.L + \frac{(Ain.L - Ain.H) \cdot (V_{\text{BX}} - V_{\text{мин}})}{V_{\text{макс}} - V_{\text{мин}}}$ (5.1)

где

Ain.L, Ain.H – заданные значения параметров Ain.L и Ain.H;

 $V_{\text{вх}}$ – текущее значение входного сигнала:

V_{мин}, **V**_{макс} – минимальное и максимальное значения входного сигнала датчика по данным таблицы 2.2 (мА, мВ или В);

 $\Pi_{\text{изм}}$ – измеренное значение параметра.

5.6.2.3 Настройка цифровой фильтрации измерений

Для дополнительной защиты от электромагнитных помех в контроллере предусмотрен программный цифровой фильтр низких частот. Цифровая фильтрация проводится в два этапа.

На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы». Для этого контроллер вычисляет разность между результатами измерений входной величины, выполненных в двух последних циклах опроса, и сравнивает ее с заданным значением, называемым полосой фильтра. Если вычисленная разность превышает заданный предел, то производится повторное измерение, полученный результат отбрасывается, а значение полосы фильтра удваивается. В случае подтверждения нового значения фильтр перестраивается (т. е. полоса фильтра уменьшается до исходной) на новое стабильное состояние измеряемой величины. Такой алгоритм позволяет защитить контроллер от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

Полоса фильтра задается в единицах измеряемой величины индивидуально для каждого датчика. Уменьшение полосы фильтра улучшает помехозащищенность входа измерения, но приводит к замедлению реакции контроллера на быстрое изменение входной величины. Поэтому при низком уровне помех или при работе с быстро меняющимися процессами рекомендуется увеличить значение полосы фильтра или отключить действие этого параметра. При работе в условиях сильных помех для устранения их влияния на работу контроллера необходимо уменьшить значение полосы фильтра. Данный фильтр может быть отключен установкой значения **0** в параметре **Полоса фильтра**.

На втором этапе фильтрации осуществляется сглаживание (демпфирование) сигнала с целью устранения шумовых составляющих. Основной характеристикой сглаживающего фильтра является «постоянная времени фильтра».

Фильтрация происходит по формуле:

$$\Pi = \Pi_{\text{изм}} \cdot T + \Pi'_{\text{изм}} \cdot (1 - T) \tag{5.3}$$

где

П – значение аналогового выхода;

Пизм – значение, измеренное на входе;

П_{изм}' – значение, измеренное на входе в предыдущий такт измерений;

T = 1 / (k / 10 + 1) - коэффициент сглаживания;

К – постоянная времени фильтра.

Постоянная времени фильтра задается в секундах индивидуально для каждого входа.

Увеличение постоянной значения фильтра улучшает помехозащищенность входа измерения, но и одновременно увеличивает его инерционность. То есть, реакция контроллера на быстрые изменения входной величины замедляется.

В случае необходимости данный фильтр может быть отключен установкой значения 0 в параметре Постоянная времени фильтра.

Временные диаграммы работы цифровых фильтров представлены на рисунке 5.22.

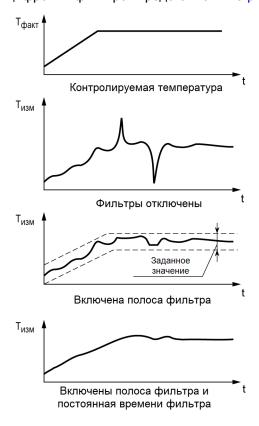


Рисунок 5.22 - Временные диаграммы работы цифровых фильтров

5.6.2.4 Коррекция измерительной характеристики датчиков

Для устранения начальной погрешности преобразователей входных сигналов, измеренное контроллером значение может быть откорректировано. В контроллере есть два типа коррекции, позволяющие осуществлять сдвиг или наклон характеристики на заданную величину.

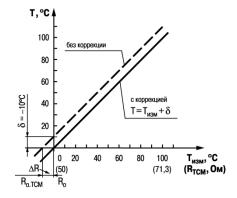


Рисунок 5.23 - Коррекция «сдвиг характеристики»

Сдвиг характеристики применяется:

- для компенсации погрешностей, вносимых сопротивлением подводящих проводов при использовании двухпроводной схемы подключения ТС;
- при отклонении у ТС значения R₀.

Такая коррекция осуществляется путем прибавления к измеренной величине значения δ. Значение δ задается параметром **Сдвиг**. Пример сдвига характеристики для датчика TCM (Cu50) графически представлен на рисунке 5.23.

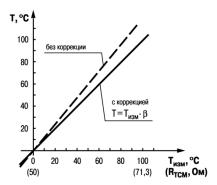


Рисунок 5.24 - Коррекция «наклон характеристики»

Изменение наклона характеристики осуществляется путем умножения измеренной (и скорректированной «сдвигом», если эта коррекция необходима) величины на поправочный коэффициент β , значение которого задается параметром **Наклон**. Пример изменения наклона измерительной характеристики графически представлен на рисунке 5.24. Данный вид коррекции используется, как правило, для компенсации погрешностей самих датчиков (например, при отклонении у термопреобразователей сопротивления параметра α от стандартного значения) или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (при работе с преобразователями, выходным сигналом которых является сила тока постоянного напряжения). Значение поправочного коэффициента β задается в безразмерных единицах в диапазоне от **-1** до **10** и перед установкой определяется по формуле:

5.7 Интерфейс RS-485

Прибор оснащён портом RS-485. Особенности работы с данным интерфейсом описаны ниже.

На рисунке 5.25 показана шина RS-485 с распределенными сетевыми узлами. Для исключения неопределенного состояния применяется подтягивающие резисторы R_{FS} (failsafe – отказоустойчивый), которые гарантируют «логическую единицу» на выходе. Подтягивающие резисторы обеспечивают подтяжку прямого входа (A) к питанию, а инверсного (B) – к земле.

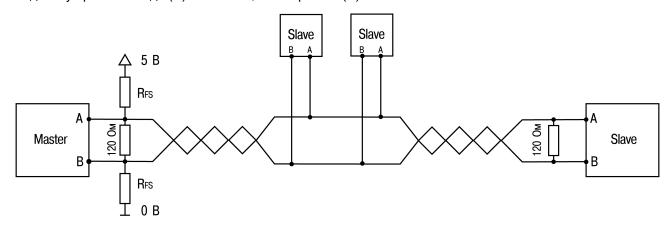


Рисунок 5.25 - Сеть RS-485 с подтягивающими резисторами

i

ПРИМЕЧАНИЕ

Подтягивающие резисторы можно включить в среде программирования Codesys (см. Описание таргет-файлов).

5.8 Интерфейс Ethernet

Контроллер оснащён двумя портами Ethernet 100 Base-T, которые обеспечивают сетевое взаимодействие контроллера с другими устройствами.

Назначение контактов для порта Ethernet представлено на рисунке 5.26 и описано в таблице 5.12.

Рисунок 5.26 – Контакты порта Ethernet

Таблица 5.12 - Назначение контактов порта Ethernet

№ контакта	Описание
1	TD+
2	TD-
3	RD+
4	_
5	_
6	RD-
7	_
8	_

На рисунке 5.26 также отображены светодиоды, которые показывают состояние интерфейса Ethernet. Назначение светодиодов описано в таблице 5.13.

Таблица 5.13 – Назначение светодиодов у порта Ethernet

Светодиод	Назначение	Статус	Описание
Желтый	Передача данных	Выкл.	Нет активности
		Вкл.	Передача или получение данных
Зеленый	Соединение	Выкл.	Нет соединения или соединение 10 Мбит/с
		Вкл.	Соединение 100 Мбит/с

ПРЕДУПРЕЖДЕНИЕ

Порт Ethernet может использоваться для подключения к среде разработки CODESYS V3.5 (см. Первый старт).

ВНИМАНИЕ

Если порты Ethernet 1 и Ethernet 2 объединены в мост, сетевой трафик обрабатывается процессором контроллера. Это приводит к увеличению времени цикла пользовательского приложения CODESYS.

Настроить режимы работы сетевых интерфейсов контроллера можно в WEB-конфигураторе (см. раздел 6.1).

Таблица 5.14 – Заводские сетевые настройки

Парамотр	Значение		
Параметр	Порт 1	Порт 2	
ІР-адрес	192.168.0.10		
Маска подсети	255.255.0.0	DHCP клиент	
ІР-адрес шлюза	_		

5.8.1 Межсетевой экран (Firewall)

Контроллер поддерживает работу с межсетевым экраном (Firewall), благодаря которому можно разделить сетевые зоны на публичную (WAN) и локальную (LAN) с фильтрацией сетевого трафика по заданным правилам на границе с публичной сетью. Правила для трафика определяют политику прохождения пакетов между разными зонами.

Настройка межсетевого экрана производится в WEB-конфигураторе.

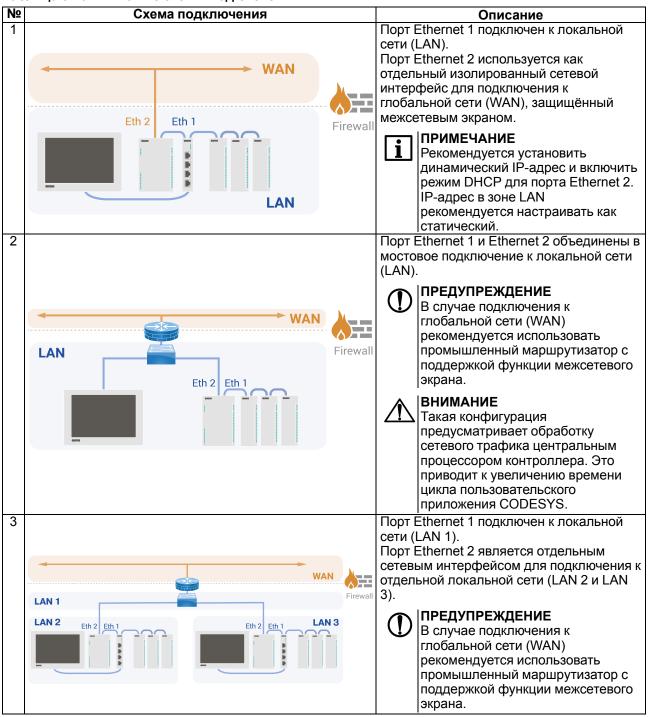
Для удобства настройки межсетевого экрана рекомендуется использовать **Мастер настройки**. С помощью **Мастера настройки** можно задать доступ к службам, перечисленным в таблице 5.15.

ВНИМАНИЕ

Любые открытые порты во внешнюю сеть (WAN) могут представлять серьёзную угрозу безопасности.

Таблица 5.15 - Правила прохождения сетевого трафика

Уровень доступа	Протокол	Безопасность*	
WEB-конфигуратор		Доступ по протоколам НТТР и	
	HTTP / HTTPS	HTTPS следует ограничить с	
		помощью пароля для входа	
		Доступ по протоколу SSH	
		следует обязательно	
ОС контроллера	SSH	ограничить с помощью пароля	
		или авторизации с	
		использованием SSH ключей	
		Доступ по протоколу FTP	
Передача файлов	FTP	следует обязательно	
, , ,	1 11	ограничить безопасным	
		паролем	
Службы CODESYS (WEB-	ModBus TCP	Данные службы будут доступны	
визуализация, отладка)	WOODUS TOP	— без авторизации	
Полевые устройства	ModBus TCP / OPC UA	осо авториоации	


ПРИМЕЧАНИЕ

5.8.2 Типовые схемы сетевых портов

Для упрощения работы с сетевыми настройками рекомендуется использовать Мастер настройки (см. раздел 6.1), в котором можно выбрать одну из типовых схем сетевых портов контроллера. Схема сетевых портов определяет роль каждого из физических сетевых портов устройства. Доступные схемы перечислены в таблице 5.16.

^{*} Настройки безопасности описаны в разделе 6.2.

Таблица 5.16 - Типовые схемы подключения

5.9 USB Device (RNDIS)

Прибор можно подключить к ПК через порт USB Device (RNDIS) с помощью кабеля MicroUSB-USB (входит в комплект поставки).

Процесс подключения к среде разработки CODESYS V3.5 подробно описан в документе Первый старт.

ТРИМЕЧАНИЕ IP-адрес контроллера по умолчанию – **172.16.0.1**

6 Настройка

6.1 Быстрый старт

Для включения прибора необходимо подать питание. Начнёт светиться индикатор «Питание» о.

После загрузки прибора индикатор «Работа» Ф перестанет мигать.

Для дальнейшей настройки прибора необходимо подключиться к WEB-конфигуратору. Для этого следует в адресной строке любого браузера ввести IP адрес контроллера:

- если прибор подключен по интерфейсу USB Device, IP адрес по умолчанию 172.16.0.1;
- если прибор подключен по интерфейсу Ethernet (порт 1), IP адрес по умолчанию 192.168.0.10.

ПРИМЕЧАНИЕ

Подключение к интерфейсу USB Device выполняется при помощи кабеля MicroUSB-USB.

ВНИМАНИЕ

He рекомендуется подключаться через внешние USB-концентраторы, так как в этом случае драйвер RNDIS, реализованный в приборе, может работать некорректно.

ВНИМАНИЕ

Для работы в операционной системе Windows необходимо установить драйвер RNDIS. Драйвер доступен в WEB-конфигураторе на странице **Загрузки** или на сайте www.owen.ru.

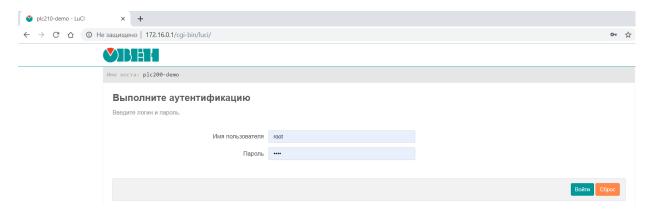


Рисунок 6.1 – Главная страница WEB-конфигуратора

По умолчанию имя пользователя: root, пароль: owen

При первом подключении к WEB-конфигуратору будет предложено воспользоваться **Мастером настройки**. В дальнейшем его можно запустить вручную при помощи пункта **Мастер настройки** главного меню **Система**.

Рисунок 6.2 – Запуск «Мастера настройки» при первом включении устройства

Конфигурация параметров в Мастере настройки разделена на следующие шаги:

- выбор языка устройства;
- установка пароля доступа к устройству;
- конфигурация параметров хоста (имя устройства);
- настройка даты и времени, в том числе конфигурация клиента и сервера NTP;
- выбор схемы сетевых портов;
- настройка сетевых интерфейсов;

- настроконтроллеровнастройка службы FTP;
- настройка правил межсетевого экрана (Firewall).

i Pafe

ПРИМЕЧАНИЕ

Работа с **Мастером настройки** подробно описана в документе Краткое описание основных функций Web-интерфейса управления контроллеров.

6.2 Управление доступом

Любые открытые порты во внешнюю сеть (WAN) могут представлять серьёзную угрозу безопасности, поэтому необходима защита доступа к контроллеру.

Настройка локального и удалённого доступа к устройству производится в WEB-конфигураторе на странице **Управление** главного меню **Система**.

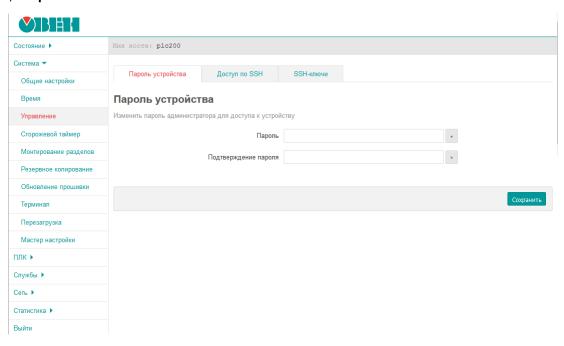


Рисунок 6.3 - Страница «Управление»

На данной странице доступны три вкладки:

- пароль устройства изменение пароля для пользователя «root»;
- доступ по SSH настройки сервера Dropbear, который предоставляет доступ к устройствам по протоколам SSH и SFTP;
- SSH-ключи добавление публичных OpenSSH ключей (.pub).

Доступ к FTP-серверу настраивается на восьмом шаге **Мастера настройки**. В дальнейшем пароль можно изменить на странице **FTP** в меню **Службы**.

Настройки FTP Здесь вы можете настроить параметры FTP-сервера. Более детальную настройку FTP-сервера можно выполнить в пункте «FTP» меню «Службы». Включить службу FTP Имя пользователя ftp Пароль ••• Домашний каталог /mnt/ufs/home/ftp ▼

Рисунок 6.4 – Мастер настройки. Настройка FTP

ПРИМЕЧАНИЕ

Настройка доступа к службам контроллера подробно описана в документе Краткое описание основных функций Web-интерфейса управления контроллеров.

6.3 Обновление встроенного ПО контроллера

Обновить встроенное ПО контроллера можно одним из двух способов:

- Обновление через WEB-конфигуратор;
- Аппаратное обновление.

ПРИМЕЧАНИЕ

Актуальное ПО для контроллера доступно на сайте www.owen.ru.

Для обновления ПО при помощи WEB-конфигуратора следует:

- 1. Подключить контроллер в сеть Ethernet, в которой находится пользовательский ПК, или напрямую к ПК при помощи кабеля MicroUSB-USB.
- 2. Зайти в WEB-браузере на страницу прибора, выбрать вкладку **Обновление прошивки** главного меню **Система**.
- 3. Выбрать файл прошивки (формат *.bin).

i

ПРИМЕЧАНИЕ

По умолчанию пользовательские настройки и данные сохраняются. Чтобы выполнить сброс всех настроек к заводскому состоянию, следует выбрать функцию *Удалить* настройки прибора.

- 4. Нажать кнопку Перезагрузить устройство и обновить прошивку.
- 5. Дождаться звукового сигнала, сигнализирующего о начале обновления прошивки. Процесс обновления занимает около двух минут. После окончания прибор издаст три коротких звуковых сигнала.

Для аппаратного обновления встроенного ПО следует:

1. Отформатировать накопитель объемом не менее 512 Мбайт в файловую систему FAT16 или FAT32. Рекомендуется использовать утилиту HP USB Disk Storage Format Tool.

ПРИМЕЧАНИЕ

Накопитель должен содержать только один раздел и иметь стиль таблицы разделов MBR.

2. Поместить файл прошивки с именем plc200f.bin в корневую директорию накопителя.

ПРИМЕЧАНИЕ

Если новая прошивка имеет принципиальные отличия от текущей, следует поместить в корневую директорию накопителя файл **reset_plc** (входит в состав архива прошивки), чтобы сбросить все настройки к заводскому состоянию.

- 3. Подключить накопитель к контроллеру.
- 4. Отключить питание контроллера.
- 5. Зажать сервисную кнопку.
- 6. Включить питание контроллера.
- 7. Дождаться однократного звукового сигнала и отпустить сервисную кнопку. Процесс обновления занимает около двух минут. После окончания прибор издаст три коротких звуковых сигнала.

6.4 Восстановление заводских настроек

Для восстановления заводских настроек следует открыть WEB-конфигуратор, перейти на страницу **Резервное копирование** главного меню **Система** и нажать кнопку **Выполнить сброс**. Сетевые настройки также вернутся к заводским значениям.

6.5 Доступ в консоль

Для доступа к операционной системе контроллера в WEB-конфигураторе:

- 1. Откройте страницу Терминал главного меню Система.
- 2. Нажмите Открыть терминал в отдельном окне.
- 3. Примите исключения безопасности браузера для работы с неизвестным сертификатом SSL.

6.6 Загрузка проекта с SD-накопителя

Для обновления проекта с SD-накопителя следует:

- 1. Отформатировать накопитель в файловую систему FAT16 или FAT32 (рекомендуется использовать утилиту *HP USB Disk Storage Format Tool*).
- 2. Создать каталог с названием *арр.plc200* в корневой директории накопителя.

- 3. Скомпилировать проект CODESYS (вкладка Компиляция, команда Компиляция).
- 4. Создать загрузочное приложение в CODESYS (вкладка *Онлайн*, команда *Создать* загрузочное приложение), в окне *Сохранить как* указать путь к папке.

\mathbf{i}

ПРИМЕЧАНИЕ

Полный путь к папке не должен содержать символы кириллицы, папка должна находиться на жестком диске ПК.

- 5. Содержимое созданной папки (но не саму папку) перенести в папку накопителя, созданную ранее.
- 6. Подключить накопитель с пользовательской программой к обесточенному контроллеру.
- 7. Перевести тумблер в положение СТОП и подать питание.
- 8. Дождаться короткого звукового сигнала. Проект будет запущен.

6.7 Работа прибора с CODESYS V3.5

ВНИМАНИЕ

∆Документация по работе контроллера с CODESYS V3.5 приведена на сайте www.owen.ru.

Для начала работы с прибором в среде программирования **CODESYS V3.5** необходимо:

1. Скачать и установить CODESYS.

i

ПРИМЕЧАНИЕ

Комплект поставки включает лицензию на следующие компоненты:

- Modbus TCP Master;
- · Modbus TCP Slave;
- · Modbus Serial Master:
- Modbus Serial Slave:
- · Web-visu:
- OPC UA.
- 2. Скачать и установить архив репозитория CODESYS Repository Archive V3.5 SP4.
- Запустить CODESYS и установить таргет-файл. Для этого выполните следующие действия:
 - а. Запустите CODESYS V 3.5 и выберите в меню **Инструменты** пункт **Менеджер пакетов**.
 - b. Нажмите кнопку Установить и выберите пакет OwenTargets-3.5.package.
 - с. Выберите режим полной установки и нажмите кнопку Next.
- 4. Создать проект в приложении CODESYS, выбрав соответствующий шаблон модификации прибора.
- 5. Установить соединение прибора со средой программирования CODESYS.

ПРИМЕЧАНИЕ

Подключение к среде программирования CODESYS происходит через интерфейсы USB Device или Ethernet.

7 Техническое обслуживание

Во время выполнения работ по техническому обслуживанию контроллера следует соблюдать меры безопасности.

Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистка корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
- проверка заряда батареи по индикатору 🖾 (когда прибор находится в рабочем режиме);
- проверка качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

8 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ IEC 61131-2-2012;
- напряжение питания;
- потребляемая мощность:
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- MAC-адрес.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- дата изготовления прибора.

9 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

10 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

11 Комплектность

Наименование	Количество
Контроллер ПЛК200 (исполнение в соответствии с заказом)	1 шт.
Кабель MicroUSB-USB 1.8 м	1 шт.
Кабель RJ45-RJ45	1 шт.
Комплект заглушек для портов	1 к-т
Клемма 2EGT-5.0-002P-14	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство	1 экз.
Быстрый старт	1 экз.

ПРЕДУПРЕЖДЕНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора без уведомления или согласования с пользователем.

12 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-72632-1.11